Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 247, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443830

RESUMO

BACKGROUND: Ampelopsideae J. Wen & Z.L. Nie is a small-sized tribe of Vitaceae Juss., including ca. 47 species from four genera showing a disjunct distribution worldwide across all the continents except Antarctica. There are numerous species from the tribe that are commonly used as medicinal plants with immune-modulating, antimicrobial, and anti-hypertensive properties. The tribe is usually recognized into three clades, i.e., Ampelopsis Michx., Nekemias Raf., and the Southern Hemisphere clade. However, the relationships of the three clades differ greatly between the nuclear and the plastid topologies. There has been limited exploration of the chloroplast phylogenetic relationships within Ampelopsideae, and studies on the chloroplast genome structure of this tribe are only available for a few individuals. In this study, we aimed to investigate the evolutionary characteristics of plastid genomes of the tribe, including their genome structure and evolutionary insights. RESULTS: We sequenced, assembled, and annotated plastid genomes of 36 species from the tribe and related taxa in the family. Three main clades were recognized within Ampelopsideae, corresponding to Ampelopsis, Nekemias, and the Southern Hemisphere lineage, respectively, and all with 100% bootstrap supports. The genome sequences and content of the tribe are highly conserved. However, comparative analyses suggested that the plastomes of Nekemias demonstrate a contraction in the large single copy region and an expansion in the inverted repeat region, and possess a high number of forward and palindromic repeat sequences distinct from both Ampelopsis and the Southern Hemisphere taxa. CONCLUSIONS: Our results highlighted plastome variations in genome length, expansion or contraction of the inverted repeat region, codon usage bias, and repeat sequences, are corresponding to the three lineages of the tribe, which probably faced with different environmental selection pressures and evolutionary history. This study provides valuable insights into understanding the evolutionary patterns of plastid genomes within the Ampelopsideae of Vitaceae.


Assuntos
Genoma de Cloroplastos , Genomas de Plastídeos , Vitaceae , Humanos , Filogenia , Regiões Antárticas
2.
Eur J Pharmacol ; 942: 175545, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708977

RESUMO

Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP) is one of the main bioactive metabolites of the Chinese medicinal herb Danshen, which can be absorbed into blood compounds by oral administration of Compound Danshen dripping pills (CDDPs). Previous study showed that IDHP exerted anti-inflammatory effects by abolishing the secretion of proinflammatory factors stimulated by lipopolysaccharide (LPS). However, the effects of IDHP on LPS-induced acute lung injury (ALI) are not fully understood. In the present study, we observed the effects of IDHP on mortality and lung injury in LPS-treated mice and on LPS-induced THP-1 macrophages. Pretreatment with high dose of IDHP was found to reduce the mortality of ALI mice, significantly improve LPS-induced pathological changes, and reduce protein leakage and inhibited myeloperoxidase (MPO) activity in lung tissue. IDHP also inhibited the release of inflammatory factors in bronchoalveolar lavage fluid (BALF) and lung tissue. Meanwhile, IDHP treatment significantly reduced the expression of active-caspase1, Nlrp3, Asc speck formation, Gsdmd (part of the canonical pyroptosis pathway), caspase4 (part of the non-canonical pyroptosis pathway), therefore decreasing IL-1ß, IL-18, and ROS secretion in LPS-stimulated THP-1 macrophages. Moreover, after co-culturing endothelial/epithelial cells with conditioned medium (CM) from LPS-stimulated THP-1 macrophages, we found that the protein levels of occludin and Zonula occludens-1 (Zo-1) were increased in IDHP CM-treated endothelial cells compared to those that were LPS CM-treated. Lactic dehydrogenase (LDH) assay shows that IDHP also alleviated LPS-induced endothelial/epithelial cell injury. These findings indicate that the protective effect of IDHP on LPS-induced lung injury may be partly due to the inhibition of pyroptosis pathways.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Piroptose , Células Endoteliais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Pulmão
3.
Am J Physiol Heart Circ Physiol ; 316(3): H543-H553, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575436

RESUMO

Timely reperfusion is still the most effective approach to limit infarct size in humans. Yet, despite advances in care and reduction in door-to-balloon times, nearly 25% of patients develop heart failure postmyocardial infarction, with its attendant morbidity and mortality. We previously showed that cardioprotection results from a skin incision through the umbilicus in a murine model of myocardial infarction. In the present study, we show that an electrical stimulus or topical capsaicin applied to the skin in the same region induces significantly reduced infarct size in a murine model. We define this class of phenomena as nociceptor-induced conditioning (NIC) based on the peripheral nerve mechanism of initiation. We show that NIC is effective both as a preconditioning and postconditioning remote stimulus, reducing infarct size by 86% and 80%, respectively. NIC is induced via activation of skin C-fiber nerves. Interestingly, the skin region that activates NIC is limited to the anterior of the T9-T10 vertebral region of the abdomen. Cardioprotection after NIC requires the integrity of the spinal cord from the region of stimulation to the thoracic vertebral region of the origin of the cardiac nerves but does not require that the cord be intact in the cervical region. Thus, we show that NIC is a reflex and not a central nervous system-mediated effect. The mechanism involves bradykinin 2 receptor activity and activation of PKC, specifically, PKC-α. The similarity of the neuroanatomy and conservation of the effectors of cardioprotection supports that NIC may be translatable to humans as a nontraumatic and practical adjunct therapy against ischemic disease. NEW & NOTEWORTHY This study shows that an electrical stimulus to skin sensory nerves elicits a very powerful cardioprotection against myocardial infarction. This stimulus works by a neurogenic mechanism similar to that previously elucidated for remote cardioprotection of trauma. Nociceptor-induced conditioning is equally potent when applied before ischemia or at reperfusion and has great potential clinically.


Assuntos
Capsaicina/uso terapêutico , Cardiotônicos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Nociceptividade , Fármacos do Sistema Sensorial/uso terapêutico , Pele/inervação , Animais , Capsaicina/farmacologia , Cardiotônicos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Proteína Quinase C/metabolismo , Receptor B2 da Bradicinina/metabolismo , Reflexo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Fármacos do Sistema Sensorial/farmacologia
4.
Pain Physician ; 21(5): E509-E521, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30282399

RESUMO

BACKGROUND: Electroacupuncture (EA) has been proved to be effective in treating certain neuropathic pain conditions. The mechanisms of pain relief by EA are not fully understood. There have been sporadic reports of damage in the peripheral nervous system (PNS) and regions of the central nervous system (CNS) at the ultrastructural level following peripheral nerve injury. However, information about possible systemic changes in the PNS and CNS after nerve injury is scarce. OBJECTIVES: The goal of this study was to examine the ultrastructural changes of the nervous system induced by a local injection of cobra venom into the sciatic nerve and to compare the ultrastructural changes in rats with or without treatment with EA or pregabalin. STUDY DESIGN: An experimental study. SETTING: Department of Anesthesiology, Pain Medicine, and Critical Care Medicine, Aviation General Hospital of China Medical University. METHODS: In this study, using an established model of sciatic neuralgia induced by local injection of cobra venom into the sciatic nerve, we examined ultrastructural changes of the PNS and CNS and how they respond to EA and pregabalin treatment. EA and pregabalin were given daily from postoperative day (POD) 14 to 36. Based on previous works, the frequency of EA stimulation of the ST36 and GB34 acupoints was held to 2/100 Hz variable. Pain sensitivity in the sciatic neuralgia rats with and without treatments was assessed using the von Frey test. Ultrastructural alterations were examined bilaterally in the prefrontal cortex, hippocampus, medulla oblongata; and the cervical, thoracic, and lumbar spinal cords on PODs 14, 40, and 60. Ultrastructural examinations were also carried out on the bilateral sciatic nerves and dorsal root ganglion (DRG) at the cervical, thoracic and lumbar levels. In rats treated with EA or pregabalin, the ultrastructure was examined on PODs 40 and 60. RESULTS: Behavioral signs of pain and systemic ultrastructural changes including demyelination were observed at all levels of the PNS and CNS in rats with sciatic neuralgia. After intervention, the mechanical withdrawal thresholds of the EA group and pregabalin group were significantly higher than that of the cobra venom group (P < 0.05). Both EA and pregabalin treatments partially reversed increased cutaneous sensitivity to mechanical stimulation. However, only the EA treatment was able to repair the ultrastructural damages caused by cobra venom. LIMITATIONS: The results confirm that peripheral nerve injury led to the ultrastructural damage at different levels of the CNS as demonstrated with electron microscopy; however, we need to further verify this at both the molecular level and in light microscope level. Sciatic neuralgia induced by cobra venom is a chemical injury, and whether this exactly mimics a peripheral nerve mechanical injury is still unclear. CONCLUSIONS: Local cobra venom injection leads to systemic neurotoxicity. EA and pregabalin alleviate pain via different mechanisms. KEY WORDS: Sciatic neuralgia, cobra venom, demyelination, electroacupuncture, pregabalin, rat model.


Assuntos
Eletroacupuntura/métodos , Neuralgia/patologia , Analgésicos/farmacologia , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , China , Venenos Elapídicos/toxicidade , Gânglios Espinais/patologia , Gânglios Espinais/ultraestrutura , Masculino , Neuralgia/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Pregabalina/farmacologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Medula Espinal/patologia , Medula Espinal/ultraestrutura
5.
Brain Res ; 1012(1-2): 154-9, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15158172

RESUMO

As part of our ongoing investigation into the neurological mechanisms of acupuncture, we have tried to correlate the distribution of afferent nerve endings with acupuncture points (AP) in the rat hind limbs. In vivo extracellular microfilament recordings of Aalpha/Abeta/Adelta fibers were taken from peripheral nerves to search for units with nerve endings or receptive fields (RF) in the skin or the muscles. The location of the RFs for each identified unit was marked on scaled diagrams of the hind limb. Noxious antidromic stimulation-induced Evans blue extravasation was used to map the RFs of C-fibers in the skin or muscles. Results indicate that, for both A- and C-fibers, the distribution of RFs was closely associated with the APs. In the skin, the RFs concentrate either at the sites of APs or along the orbit of meridian channels. Similarly, the majority of sarcous sensory receptors are located at the APs in the muscle. Results from our studies strongly suggest that APs in humans may be excitable muscle/skin-nerve complexes with high density of nerve endings.


Assuntos
Pontos de Acupuntura , Músculo Esquelético/inervação , Terminações Nervosas/fisiologia , Pele/inervação , Animais , Feminino , Humanos , Masculino , Mecanorreceptores/fisiologia , Nervos Periféricos/fisiologia , Ratos , Ratos Sprague-Dawley
6.
J Neurophysiol ; 91(1): 213-22, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14715718

RESUMO

We investigated the role of mechanosensitive spinothalamic tract (STT) neurons in mediating 1) the itch evoked by intradermal injection of histamine, 2) the enhanced sense of itch evoked by innocuous stroking (alloknesis), and 3) the enhanced pain evoked by punctate stimulation (hyperalgesia) of the skin surrounding the injection site. Responses to intradermal injections of histamine and capsaicin were compared in STT neurons recorded in either the superficial or the deep dorsal horn of the anesthetized monkey. Each neuron was identified by antidromic activation from the ventral posterior lateral nucleus of thalamus and classified by its initial responses to mechanical stimuli as wide dynamic range (WDR) or high-threshold (HT). Approximately half of the WDRs and one of the HTs responded weakly to histamine, some with a duration > 5 min, the maximal time allotted. WDRs but not HTs exhibited a significant increase in response to punctate stimulation after histamine consistent with their possible role in mediating histamine-induced hyperalgesia. Neither type of neuron exhibited significant changes in response to stroking, consistent with their unlikely role in mediating alloknesis. Furthermore, nearly all STT neurons exhibited vigorous and persistent responses to capsaicin, after which they became sensitized to stroking and to punctate stimulation. We conclude that the STT neurons in our sample are more likely to contribute to pain, allodynia, and hyperalgesia than to itch and alloknesis.


Assuntos
Hiperalgesia/fisiopatologia , Células do Corno Posterior/fisiologia , Prurido/fisiopatologia , Tratos Espinotalâmicos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Capsaicina , Eletrofisiologia , Potenciais Evocados , Histamina , Temperatura Alta , Hiperalgesia/induzido quimicamente , Hiperalgesia/etiologia , Injeções Intradérmicas/métodos , Laminectomia/métodos , Macaca fascicularis , Estimulação Física/métodos , Células do Corno Posterior/efeitos dos fármacos , Prurido/induzido quimicamente , Tempo de Reação , Pele/efeitos dos fármacos , Pele/inervação , Tratos Espinotalâmicos/citologia , Tratos Espinotalâmicos/efeitos dos fármacos , Estimulação Química , Tálamo/anatomia & histologia , Tálamo/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA