Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(2): 571-586, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35704040

RESUMO

AIMS: Brain-derived neurotrophic factor (BDNF) is markedly decreased in heart failure patients. Both BDNF and its receptor, tropomyosin-related kinase receptor (TrkB), are expressed in cardiomyocytes; however, the role of myocardial BDNF signalling in cardiac pathophysiology is poorly understood. Here, we investigated the role of BDNF/TrkB signalling in cardiac stress response to exercise and pathological stress. METHODS AND RESULTS: We found that myocardial BDNF expression was increased in mice with swimming exercise but decreased in a mouse heart failure model and human failing hearts. Cardiac-specific TrkB knockout (cTrkB KO) mice displayed a blunted adaptive cardiac response to exercise, with attenuated upregulation of transcription factor networks controlling mitochondrial biogenesis/metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). In response to pathological stress (transaortic constriction, TAC), cTrkB KO mice showed an exacerbated heart failure progression. The downregulation of PGC-1α in cTrkB KO mice exposed to exercise or TAC resulted in decreased cardiac energetics. We further unravelled that BDNF induces PGC-1α upregulation and bioenergetics through a novel signalling pathway, the pleiotropic transcription factor Yin Yang 1. CONCLUSION: Taken together, our findings suggest that myocardial BDNF plays a critical role in regulating cellular energetics in the cardiac stress response.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metabolismo Energético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/metabolismo
2.
Circulation ; 139(19): 2238-2255, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30759996

RESUMO

BACKGROUND: Deficiencies of iron-sulfur (Fe-S) clusters, metal complexes that control redox state and mitochondrial metabolism, have been linked to pulmonary hypertension (PH), a deadly vascular disease with poorly defined molecular origins. BOLA3 (BolA Family Member 3) regulates Fe-S biogenesis, and mutations in BOLA3 result in multiple mitochondrial dysfunction syndrome, a fatal disorder associated with PH. The mechanistic role of BOLA3 in PH remains undefined. METHODS: In vitro assessment of BOLA3 regulation and gain- and loss-of-function assays were performed in human pulmonary artery endothelial cells using siRNA and lentiviral vectors expressing the mitochondrial isoform of BOLA3. Polymeric nanoparticle 7C1 was used for lung endothelium-specific delivery of BOLA3 siRNA oligonucleotides in mice. Overexpression of pulmonary vascular BOLA3 was performed by orotracheal transgene delivery of adeno-associated virus in mouse models of PH. RESULTS: In cultured hypoxic pulmonary artery endothelial cells, lung from human patients with Group 1 and 3 PH, and multiple rodent models of PH, endothelial BOLA3 expression was downregulated, which involved hypoxia inducible factor-2α-dependent transcriptional repression via histone deacetylase 1-mediated histone deacetylation. In vitro gain- and loss-of-function studies demonstrated that BOLA3 regulated Fe-S integrity, thus modulating lipoate-containing 2-oxoacid dehydrogenases with consequent control over glycolysis and mitochondrial respiration. In contexts of siRNA knockdown and naturally occurring human genetic mutation, cellular BOLA3 deficiency downregulated the glycine cleavage system protein H, thus bolstering intracellular glycine content. In the setting of these alterations of oxidative metabolism and glycine levels, BOLA3 deficiency increased endothelial proliferation, survival, and vasoconstriction while decreasing angiogenic potential. In vivo, pharmacological knockdown of endothelial BOLA3 and targeted overexpression of BOLA3 in mice demonstrated that BOLA3 deficiency promotes histological and hemodynamic manifestations of PH. Notably, the therapeutic effects of BOLA3 expression were reversed by exogenous glycine supplementation. CONCLUSIONS: BOLA3 acts as a crucial lynchpin connecting Fe-S-dependent oxidative respiration and glycine homeostasis with endothelial metabolic reprogramming critical to PH pathogenesis. These results provide a molecular explanation for the clinical associations linking PH with hyperglycinemic syndromes and mitochondrial disorders. These findings also identify novel metabolic targets, including those involved in epigenetics, Fe-S biogenesis, and glycine biology, for diagnostic and therapeutic development.


Assuntos
Endotélio Vascular/fisiologia , Glicina/metabolismo , Hipertensão Pulmonar/genética , Proteínas Mitocondriais/metabolismo , Adolescente , Adulto , Animais , Respiração Celular , Células Cultivadas , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Lactente , Proteínas Ferro-Enxofre/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Mutação/genética , Oxirredução , RNA Interferente Pequeno/genética , Adulto Jovem
3.
Photomed Laser Surg ; 35(2): 98-104, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27827556

RESUMO

OBJECTIVE: The objective of this study was to investigate the effect of a new water-cooled Nd:YAG laser on dentinal tubule occlusion. BACKGROUND DATA: The effect of water-cooled Nd:YAG laser on dentinal tubule occlusion has not been reported. METHODS: Acid-etched dentin samples were randomly divided into three groups: (1) dentin control, (2) dentin treated by Nd:YAG laser, (3) dentin treated by water-cooled Nd:YAG laser. After laser irradiation, half of the samples were immersed in a 6 wt% citric acid (pH 1.5) solution for 1 min to evaluate the acid resistance. The morphologies of dentin surfaces were characterized by scanning electron microscopy. The number and diameters of the open dentinal tubules were analyzed by one-way and two-way analyses of variance. RESULTS: Both the Nd:YAG laser and water-cooled Nd:YAG laser melted the superficial layer of dentin, which caused dentinal tubule occlusion in most areas and diameter reduction of the rest open tubules. Microcracks on the dentin surface were only observed in the Nd:YAG laser group. The tubule occlusion induced by the two lasers showed a good acid resistance. CONCLUSIONS: The effect of water-cooled Nd:YAG laser on dentinal tubule occlusion is similar to that of the Nd:YAG laser. The dentinal tubule occlusion induced by the two lasers could resist acid challenge to some extent.


Assuntos
Crioterapia/métodos , Dentina/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Dente Molar/efeitos da radiação , Análise de Variância , Oclusão Dentária , Sensibilidade da Dentina/terapia , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura/métodos , Análise Multivariada , Água/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA