RESUMO
Ovarian cancer (OC) is a malignant tumor that seriously threatens women's health. Due to the difficulty of early diagnosis, most patients exhibit advanced disease or peritoneal metastasis at diagnosis. We discovered that IFFO1 is a novel tumor suppressor, but its role in tumorigenesis, development and chemoresistance is unknown. In this study, IFFO1 levels were downregulated across cancers, leading to the acceleration of tumor development, metastasis and/or cisplatin resistance. Overexpression of IFFO1 inhibited the translocation of ß-catenin to the nucleus and decreased tumor metastasis and cisplatin resistance. Furthermore, we demonstrated that IFFO1 was regulated at both the transcriptional and posttranscriptional levels. At the transcriptional level, the recruitment of HDAC5 inhibited IFFO1 expression, which is mediated by the transcription factor YY1, and the METTL3/YTHDF2 axis regulated the mRNA stability of IFFO1 in an m6A-dependent manner. Mice injected with IFFO1-overexpressing cells had lower ascites volumes and tumor weights throughout the peritoneal cavity than those injected with parental cells expressing the vector control. In conclusion, we demonstrated that IFFO1 is a novel tumor suppressor that inhibits tumor metastasis and reverses drug resistance in ovarian cancer. IFFO1 was downregulated at both the transcriptional level and posttranscriptional level by histone deacetylase and RNA methylation, respectively, and the IFFO1 signaling pathway was identified as a potential therapeutic target for cancer.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Filamentos Intermediários , Metiltransferases , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adenosina/farmacologia , Carcinogênese , Cisplatino/farmacologia , Regulação para Baixo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismoRESUMO
BACKGROUND: Astaxanthin is a carotenoid pigment that possesses potent antioxidative, anti-inflammatory, antitumor, and immunomodulatory activities. Previous studies have demonstrated that astaxanthin displays potential neuroprotective properties for the treatment of central nervous system diseases, such as ischemic brain injury and subarachnoid hemorrhage. This study explored whether astaxanthin is neuroprotective and ameliorates neurological deficits following traumatic brain injury (TBI). RESULTS: Our results showed that, following CCI, treatment with astaxanthin compared to vehicle ameliorated neurologic dysfunctions after day 3 and alleviated cerebral edema and Evans blue extravasation at 24 h (p < 0.05). Astaxanthin treatment decreased AQP4 and NKCC1 mRNA levels in a dose-dependent manner at 24 h. AQP4 and NKCC1 protein expressions in the peri-contusional cortex were significantly reduced by astaxanthin at 24 h (p < 0.05). Furthermore, we also found that bumetanide (BU), an inhibitor of NKCC1, inhibited trauma-induced AQP4 upregulation (p < 0.05). CONCLUSIONS: Our data suggest that astaxanthin reduces TBI-related injury in brain tissue by ameliorating AQP4/NKCC1-mediated cerebral edema and that NKCC1 contributes to the upregulation of AQP4 after TBI.