RESUMO
Endometriosis is defined as the development of endometrial glands and stroma outside the uterine cavity. Pathophysiology of this disease includes abnormal hormone profiles, cell survival, migration, invasion, angiogenesis, oxidative stress, immunology, and inflammation. Melatonin is a neuroendocrine hormone that is synthesized and released primarily at night from the mammalian pineal gland. Increasing evidence has revealed that melatonin can be synthesized and secreted from multiple extra-pineal tissues where it regulates immune response, inflammation, and angiogenesis locally. Melatonin receptors are expressed in the uterus, and the therapeutic effects of melatonin on endometriosis and other reproductive disorders have been reported. In this review, key information related to the metabolism of melatonin and its biological effects is summarized. Furthermore, the latest in vitro and in vivo findings are highlighted to evaluate the pleiotropic functions of melatonin, as well as to summarize its physiological and pathological effects and treatment potential in endometriosis. Moreover, the pharmacological and therapeutic benefits derived from the administration of exogenous melatonin on reproductive system-related disease are discussed to support the potential of melatonin supplements toward the development of endometriosis. More clinical trials are needed to confirm its therapeutic effects and safety.
Assuntos
Endometriose , Melatonina , Glândula Pineal , Animais , Endometriose/tratamento farmacológico , Feminino , Humanos , Inflamação/metabolismo , Mamíferos/metabolismo , Melatonina/farmacologia , Glândula Pineal/metabolismo , Receptores de Melatonina/metabolismo , Receptores de Melatonina/uso terapêuticoRESUMO
Nonalcoholic fatty liver disease (NAFLD) has become a surge burden worldwide due to its high prevalence, with complicated deterioration symptoms such as liver fibrosis and cancer. No effective drugs are available for NALFD so far. The rapid growth of clinical demand has prompted the treatment of NAFLD to become a research hotspot. Protocatechuic acid (PCA) is a natural secondary metabolite commonly found in fruits, vegetables, grains, and herbal medicine. It is also the major internal metabolites of anthocyanins and other polyphenols. In the present manuscript, food sources, metabolic absorption, and efficacy of PCA were summarized while analyzing its role in improving NAFLD, as well as the mechanism involved. The results indicated that PCA could ameliorate NAFLD by regulating glucose and lipid metabolism, oxidative stress and inflammation, gut microbiota and metabolites. It was proposed for the first time that PCA might reduce NAFLD by enhancing the energy consumption of brown adipose tissue (BAT). However, the PCA administration mode and dose for NAFLD remain inconclusive. Fresh insights into the specific molecular mechanisms are required, while clinical trials are essential in the future. This review provides new targets and reasoning for the clinical application of PCA in the prevention and treatment of NAFLD.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Antocianinas/farmacologia , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/metabolismo , Fígado/metabolismoRESUMO
Endometriosis is defined as endometrial tissues found outside the uterine cavity. ProEGCG is a prodrug of Epigallocatechin gallate (EGCG), a potent polyphenol found in green tea. It inhibits the development of endometriotic lesions of mouse model in vivo, with higher efficacy and more remarkable anti-oxidative ability than EGCG. Our study aims to identify the molecular binding targets and pharmacological actions of ProEGCG in treating endometriosis. Protein target interaction study is essential to fully characterize the mechanism of actions, related therapeutic effects, and side effects. We employed a combined approach, starting with an in silico reverse screening of protein targets and molecular docking, followed by in vitro cellular thermal shift assay (CESTA) to assess the stability of protein-small molecule complexes. Then microarray and immunostaining of endometriotic lesions in mice in vivo confirmed the molecular interaction of the selected targets after treatment. Our study identified enzymes nicotinamide nucleotide adenylyltransferase (NMNAT)1 and NMNAT3 as protein targets of ProEGCG in silico and in vitro and were overexpressed after ProEGCG treatment in vivo. These findings suggested that participation in nicotinate and nicotinamide metabolism potentially regulated the redox status of endometriosis via its antioxidative capacities through binding to the potential therapeutic targets of ProEGCG.
RESUMO
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-ß, Wnt/ß-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.