Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(28): e2301283, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029662

RESUMO

Acute kidney injury (AKI) induced by ischemia reperfusion is closely related to mitochondrial dysfunction. Nicotinamide adenine dinucleotide (NAD+ ) can enhance the mitochondrial function and restrain the following inflammation, but it is hardly delivered and lacks renal targeting ability. To address these problems, herein, an ultrasmall Fe3 O4 nanoparticle is used as a carrier to deliver nicotinamide mononucleotide (NMN), a precursor of NAD+ . An outstanding sophistication of the current design is that once NMN is attached on the surface of Fe3 O4 nanoparticles through its phosphate group, the remaining part is structurally highly similar to nicotinamide riboside, which provides an opportunity to deliver the NAD+ precursor into renal cells through nicotinamide riboside kinase 1 on the cell membrane. It is demonstrated that NMN-loaded Fe3 O4 nanoparticles can effectively reverse AKI induced by ischemia reperfusion. In-depth studies indicate that a well-timed iron replenishment following anti-inflammation treatment plays a determined role in recovering AKI, which distinguishes the current study from previous strategies centering on anti-ROS (reactive oxygen species), anti-inflammation, or even iron elimination.


Assuntos
Injúria Renal Aguda , NAD , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA