Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Am J Chin Med ; 52(2): 513-539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533568

RESUMO

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Assuntos
Astragalus propinquus , Interleucina 22 , Idoso , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Pré-Escolar , Astragalus propinquus/química , Intestinos , Transdução de Sinais , Intestino Delgado , Células-Tronco , Polissacarídeos/farmacologia , Envelhecimento , Regeneração
2.
Poult Sci ; 103(4): 103554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401225

RESUMO

Heat stress (HS) causes oxidative damage and abnormal metabolism of muscle, thus impairing the meat quality in broilers. Selenium is an indispensable element for enhancing antioxidant systems. In our previous study, we synthesized a novel type of biogenic selenium nanoparticles synthesized with alginate oligosaccharides (SeNPs-AOS), and found that the particle size of Se is 80 nm and the Se content is 8% in the SeNPs-AOS; and dietary 5 mg/kg SeNPs-AOS has been shown to be effective against HS in broilers. However, whether SeNPs-AOS can mitigate HS-induced the impairment of thigh muscle quality in broilers is still unclear. Therefore, the purpose of this study was to investigate the protective effects of dietary SeNPs-AOS on meat quality, antioxidant capacity, and metabolomics of thigh muscle in broilers under HS. A total of 192 twenty-one-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates per group (8 broilers per replicate) according to a 2 × 2 experimental design: thermoneutral group (TN, broilers raised under 23±1.5°C); TN+SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (broilers raised under 33 ± 2°C for 10 h/d); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). The results showed that HS increased the freezing loss, cooking loss, and malondialdehyde (MDA) content of thigh muscle, whereas decreased the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as downregulated the mRNA expression of SOD2, CAT, GPX3, nuclear factor erythroid 2-related factor 2 (Nrf2), selenoprotein S (SELENOS), solute carrier family 7 member 11 (SLC7A11), GPX4, and ferroportin 1 (Fpn1) of thigh muscle (P < 0.05). Dietary SeNPS-AOS reduced the b* value, elevated the pH0min value and the activities of T-SOD, GSH-Px, glutathione S-transferase (GST) and the mRNA expression levels of GSTT1, GSTA3, GPX1, GPX3, ferritin heavy polypeptide-1 (FTH1), and Fpn1 of thigh muscle in broilers under HS (P < 0.05). Nontargeted metabolomics analysis identified a total of 79 metabolites with significant differences among the four groups, and the differential metabolites were mainly enriched in 8 metabolic pathways including glutathione metabolism and ferroptosis (P < 0.05). In summary, dietary 5 mg/kg SeNPs-AOS (Se content of 8%) could alleviate HS-induced impairment of meat quality by improving the oxidative damage, metabolic disorders and ferroptosis of thigh muscle in broilers challenged with HS. Suggesting that the SeNPs-AOS may be used as a novel nano-modifier for meat quality in broilers raised in thermal environment.


Assuntos
Ferroptose , Selênio , Animais , Antioxidantes/metabolismo , Selênio/metabolismo , Galinhas/fisiologia , Coxa da Perna , Suplementos Nutricionais/análise , Músculo Esquelético , Resposta ao Choque Térmico , Superóxido Dismutase/metabolismo , Carne/análise , RNA Mensageiro/metabolismo , Ração Animal/análise
3.
Neuroscience ; 542: 47-58, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364964

RESUMO

This study aimed to investigate the anti-depressant effect of traditional pediatric massage (TPM) in adolescent rats and its possible mechanism. The adolescent depression model in rats was established by using chronic unpredictable mild stress (CUMS). All rats were randomly divided into five groups (seven per group), including the groups of control (CON), CUMS, CUMS with TPM, CUMS with back stroking massage (BSM) and CUMS with fluoxetine (FLX). The tests of sucrose preference, Morris water maze and elevated plus maze were used to evaluate depression-related behaviors. Plasma corticosterone (CORT) level was measured by ELISA. The gene and protein expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) were measured by RT-qPCR and IHC respectively. The results showed that CUMS induced depression-related behaviors in the adolescent rats, along with decreased weight gain and reduced hippocampal expressions of GR, IGF-1 and BDNF. TPM could effectively prevent depression-related behaviors in CUMS-exposed adolescent rats, manifested as increasing weight gain, sucrose consumption, ratio of open-arm entry, times of crossing the specific quadrant and shortening escape latency. TPM also decreased CORT level in plasma, together with enhancing expressions of GR, IGF-1 and BDNF in the hippocampus. These results may support the clinical application of TPM to prevent and treat adolescent depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Humanos , Criança , Ratos , Animais , Adolescente , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antidepressivos/metabolismo , Receptores de Glucocorticoides/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Massagem , Sacarose/metabolismo , Aumento de Peso , Modelos Animais de Doenças
4.
J Orthop Res ; 42(6): 1314-1325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225869

RESUMO

Known to be involved in bone-cartilage metabolism, Vitamin D (VD) may play a role in human's disc pathophysiology. Given that postmenopausal women are prone to suffer VD deficiency and intervertebral disc degeneration (IDD), this study is intended to investigate whether VD can delay IDD in ovariectomized rats by improving bone microstructure and antioxidant stress. Female Sprague-Dawley rats were randomly allocated into four groups: sham, oophorectomy (OVX)+VD deficiency (VDD), OVX, and OVX+VD supplementation (VDS). In vivo, after a 6-month intervention, imaging and pathology slice examinations showed that IDD induced by OVX was significantly alleviated in VDS and deteriorated by VDD. The expressions of aggrecan and Collagen II in intervertebral disc were reduced by OVX and VDD, and elevated by VDS. Compared with the OVX+VDD and OVX group vertebrae, OVX+VDS group vertebrae showed significantly improved endplate porosity and lumbar bone mineral density with increased percent bone volume and trabecular thickness. Furthermore, 1α,25(OH)2D3 restored the redox balance (total antioxidant capacity, ratio of oxidized glutathione/glutathione) in the disc. The cocultivation of 1α,25(OH)2D3 and nucleus pulposus cells (NPCs) was conducted to observe its potential ability to resist excessive oxidative stress damage induced by H2O2. In vitro experiments revealed that 1α,25(OH)2D3 reduced the senescence, apoptosis, and extracellular matrix degradation induced by H2O2 in NPCs. In conclusion, VDS exhibits protective effects in OVX-induced IDD, partly by regulating the redox balance and preserving the microstructure of endplate. This finding provides a new idea for the prevention and treatment of IDD.


Assuntos
Degeneração do Disco Intervertebral , Ovariectomia , Ratos Sprague-Dawley , Vitamina D , Animais , Feminino , Degeneração do Disco Intervertebral/prevenção & controle , Degeneração do Disco Intervertebral/metabolismo , Vitamina D/uso terapêutico , Vitamina D/farmacologia , Densidade Óssea/efeitos dos fármacos , Deficiência de Vitamina D/complicações , Ratos , Agrecanas/metabolismo , Estresse Oxidativo/efeitos dos fármacos
5.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198804

RESUMO

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Assuntos
Síndrome Cardiorrenal , Emodina , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Emodina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
6.
J Ethnopharmacol ; 321: 117536, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056539

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tangzhiqing decoction (TZQD) is an effective prescription developed by Jiangsu Province Hospital of Chinese Medicine for the treatment of diabetes mellitus (DM) and its complications, which has a clear cerebral protective effect on mice with diabetic cognitive dysfunction, but its specific mechanism has not been well elucidated. AIMS OF THE STUDY: This study aims to verify the protection of TZQD on cognitive function in mice with type 2 diabetes mellitus (T2DM) and explore the possible underlying mechanisms. MATERIALS AND METHODS: Six active ingredients in TZQD were detected using high-performance liquid chromatography analysis. In vivo experiments, the protection of TZQD on cognitive function and hippocampal neurons in type 2 diabetes mice was verified to obtain the optimal intervention dose of TZQD. TZQD and 3-methyladenine (3 MA) respectively or jointly intervened in mice with T2DM for 12 weeks, followed by detecting the cognitive difference, hippocampus cornu ammonis 1 (CA1) region injury, and hippocampal neuronal apoptosis in each group. Simultaneously, the investigation of autophagosome formation and organelle impairment in hippocampal neurons, along with the examination of AMPK/mTOR pathway proteins and autophagy-related proteins, was conducted to elucidate the potential mechanisms, through which TZQD modulates autophagy and enhances cognitive function. In vitro experiments, TZQD-containing serum and AMPK inhibitor Compound C (CC) were used to intervene in mouse hippocampal neuron HT22 cells under high glucose environment, further clarifying the regulatory role of TZQD on the AMPK/mTOR pathway and its impact on HT22 cell apoptosis and autophagy. RESULTS: In vivo experiment results showed that TZQD had an obvious hypoglycemic effect. Different doses of TZQD could improve cognitive function and hippocampus damage in diabetes mice, with the middle dose of TZQD showing the best effect. TZQD increased the swimming speed of diabetes mice, improved their spatial recognition and memory ability, and reduced hippocampal neuronal apoptosis, Nissl body injury, and p-tau217 protein deposition. In addition, through transmission electron microscopy (TEM), immunofluorescence, and Western blot (WB) detection, TZQD significantly improved the organelle damage of hippocampal neurons in diabetes mice, promoted the formation of autophagy lysosomes, increased the expression of autophagy-related proteins like Beclin 1, LC3II/LC3I, LAMP1, and LAMP2, reduced the level of P62 and promoted autophagy flow, which, however, were all significantly weakened by 3 MA. Meanwhile, TZQD regulated the expressions of AMPK/mTOR pathway proteins. In vitro experimental study results showed that TZQD can regulate the expression ratio of p-AMPK/AMPK alpha 1 and p-mTOR/mTOR in HT22 cells under high glucose conditions and improved the morphology and vitality of HT22 cells. By employing techniques such as monodansylcadaverine (MDC) staining, Lysosomal red fluorescent probe staining, and Annexin V-FITC/PI double staining, the investigation revealed that TZQD administration resulted in enhanced autophagosome formation, preservation of a lysosomal acidic milieu, and consequent mitigation of HT22 cell apoptosis under high glucose conditions. CONCLUSIONS: TZQD can regulate the AMPK/mTOR pathway to activate autophagy to attenuate hippocampal neuronal apoptosis, thereby protecting cognitive function in diabetic mice.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Experimental/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Disfunção Cognitiva/tratamento farmacológico , Autofagia , Glucose/farmacologia , Proteínas Relacionadas à Autofagia , Apoptose
7.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38102768

RESUMO

Leaf nutrient resorption and drought resistance are crucial for the growth and survival of plants. However, our understanding of the relationships between leaf nutrient resorption and plant drought resistance is still limited. In this study, we investigated the nitrogen and phosphorus resorption efficiencies (NRE and PRE), leaf structural traits, leaf osmotic potential at full hydration (Ψosm), xylem water potential at 50% loss of xylem-specific hydraulic conductivity (P50) and seasonal minimum water potential (Ψmin) for 18 shrub and tree species in a semiarid savanna ecosystem, in Southwest China. Our results showed that NRE and PRE exhibited trade-off against drought resistance traits (Ψosm and P50) across woody species. Moreover, this relationship was modulated by leaf structural investment. Species with low structural investment (e.g., leaf mass per area, leaf dry mass content and leaf construction cost [LCC]) tend to have high NRE and PRE, while those with high LCCs show high drought resistance, showing more negative Ψosm and P50.These results indicate that species with a lower leaf structural investment may have a greater need to recycle their nutrients, thus exhibiting higher nutrient resorption efficiencies, and vice versa. In conclusion, nutrient resorption efficiency may be a crucial adaptation strategy for coexisting plants in semiarid ecosystems, highlighting the importance of understanding the complex relationships between nutrient cycling and plant survival strategies.


Assuntos
Ecossistema , Pradaria , Resistência à Seca , Nitrogênio/análise , Fósforo/análise , Plantas , Árvores , China , Água , Folhas de Planta/química
8.
Antioxidants (Basel) ; 12(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136152

RESUMO

Selenium (Se) is an indispensable trace element with versatile functions in antioxidant defense in poultry. In our previous study, we synthesized a novel type of biogenic selenium nanoparticle based on alginate oligosaccharides (SeNPs-AOS), and found that the particles are sized around 80 nm with an 8% Se content, and the dietary addition of 5 mg/kg of SeNPs-AOS could effectively alleviate the deleterious effects of heat stress (HS) in broilers, but it is still unclear whether SeNPs-AOS can improve the meat quality. Therefore, the aim of this study was to evaluate the protective effects of SeNPs-AOS on breast meat quality in heat-stressed broilers, and explore the relevant mechanisms. Birds at the age of 21 days were randomly divided into four groups with six replicates per group (eight broilers per replicate) according to a 2 × 2 experimental design, using HS (33 ± 2 °C, 10 h/day vs. thermoneutral, TN, under 23 ± 1.5 °C) and SeNPs-AOS (5 mg/kg feed vs. no inclusion) as variables. The results showed that dietary SeNPs-AOS decreased the cooking loss (p < 0.05), freezing loss (p < 0.001), and shear force (p < 0.01) of breast muscle in heat-stressed broilers. The non-targeted metabolomics analysis of the breast muscle identified 78 differential metabolites between the HS and HS + SeNPs-AOS groups, mainly enriched in the arginine and proline metabolism, ß-alanine metabolism, D-arginine and D-ornithine metabolism, pantothenate, and CoA biosynthesis pathways (p < 0.05). Meanwhile, supplementation with SeNPs-AOS increased the levels of the total antioxidant capacity (T-AOC), the activities of catalase (CAT) and glutathione peroxidase (GSH-Px), and decreased the content of malondialdehyde (MDA) in the breast muscle (p < 0.05) in broilers under HS exposure. Additionally, SeNPs-AOS upregulated the mRNA expression of CAT, GPX1, GPX3, heme oxygenase-1 (HO-1), masculoaponeurotic fibrosarcoma G (MafG), MafK, selenoprotein W (SELENOW), SELENOK, ferritin heavy polypeptide-1 (FTH1), Ferroportin 1 (Fpn1), and nuclear factor erythroid 2-related factor 2 (Nrf2) (p < 0.05), while it downregulated Kelch-like ECH-associated pro-36 tein 1 (Keap1) and prostaglandin-endoperoxide Synthase 2 (PTGS2) expression (p < 0.05) in broilers under HS. These findings demonstrated that the dietary addition of SeNPs-AOS mitigated HS-induced oxidative damage and metabolite changes in the breast muscle of broilers, which may be related to the regulation of the Nrf2 signaling pathway and selenoprotein synthesis. In addition, SeNPs-AOS upregulated the breast muscle gene expression of anti-ferroptosis-related molecules in broilers under HS, suggesting that SeNPs-AOS can be used as novel Se supplements against HS in broilers.

9.
Front Pharmacol ; 14: 1272241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38108066

RESUMO

Medicinal plants are the primary sources for the discovery of novel medicines and the basis of ethnopharmacological research. While existing studies mainly focus on the chemical compounds, there is little research about the functions of other contents in medicinal plants. Extracellular vesicles (EVs) are functionally active, nanoscale, membrane-bound vesicles secreted by almost all eukaryotic cells. Intriguingly, plant-derived extracellular vesicles (PDEVs) also have been implicated to play an important role in therapeutic application. PDEVs were reported to have physical and chemical properties similar to mammalian EVs, which are rich in lipids, proteins, nucleic acids, and pharmacologically active compounds. Besides these properties, PDEVs also exhibit unique advantages, especially intrinsic bioactivity, high stability, and easy absorption. PDEVs were found to be transferred into recipient cells and significantly affect their biological process involved in many diseases, such as inflammation and tumors. PDEVs also could offer unique morphological and compositional characteristics as natural nanocarriers by innately shuttling bioactive lipids, RNA, proteins, and other pharmacologically active substances. In addition, PDEVs could effectively encapsulate hydrophobic and hydrophilic chemicals, remain stable, and cross stringent biological barriers. Thus, this study focuses on the pharmacological action and mechanisms of PDEVs in therapeutic applications. We also systemically deal with facets of PDEVs, ranging from their isolation to composition, biological functions, and biotherapeutic roles. Efforts are also made to elucidate recent advances in re-engineering PDEVs applied as stable, effective, and non-immunogenic therapeutic applications to meet the ever-stringent demands. Considering its unique advantages, these studies not only provide relevant scientific evidence on therapeutic applications but could also replenish and inherit precious cultural heritage.

10.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5681-5689, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114164

RESUMO

Circadian rhythm refers to the daily rhythmic variations in an organism. The irregular lifestyles of modern humans have led to a high incidence of chronic diseases, highlighting an inseparable relationship between disrupted circadian rhythm and disease development. TCM has long discussed rhythmic variations, with records dating back to the Yellow Emperor's Inner Canon(Huang Di Nei Jing), which laid a rich theoretical foundation for the research on circadian rhythm. Modern medical research has provided a more comprehensive explanation of its molecular mechanisms. This article integrated the current understanding of circadian rhythm in both Chinese and western medicine, emphasizing the crucial relationship between rhythm regulation and disease treatment. By highlighting the interdisciplinary nature of the two fields, it offers new directions for exploring the field of chronomedicine.


Assuntos
Terapia por Acupuntura , Pesquisa Biomédica , Polygonatum , Humanos , Medicina Tradicional Chinesa , Ritmo Circadiano
11.
Zhonghua Nan Ke Xue ; 29(2): 131-137, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-37847084

RESUMO

OBJECTIVE: To evaluate the effect of transurethral plasmakinetic enucleation of the prostate (PKEP) with complete preservation of the urethral mucosa in the 11-1 o'clock position on urinary continence and erectile function in BPH patients. METHODS: We retrospectively analyzed the clinical data on 84 cases of BPH treated by traditional PKEP (group A, n = 48) or modified PKEP with complete preservation of the urethral mucosa in the 11-1 o'clock position (group B, n = 36) from January 2017 to December 2021. All the patients had sexual activities within three months preoperatively. We followed up the patients for 12 months after surgery and compared the baseline, surgery-related and follow-up data between the two groups of patients. RESULTS: There were no statistically significant differences between the two groups of patients in age, disease duration, prostate volume, preoperative postvoid residual urine (PVR), preoperative maximum urinary flow rate (Qmax), IPSS, PSA level, QOL scores or IIEF-5 scores, nor in the operation time, intraoperative hemoglobin decrease, volume of resected tissue, bladder flushing time, postoperative hospital stay, or postoperative improvement of Qmax and IPSS. The rate of urinary continence was significantly higher in group B than in A at 1 month postoperatively (66.67% ï¼»24/36ï¼½ vs 43.25% ï¼»20/48ï¼½, P = 0.025) and so were IIEF-5 scores at 6 months (16.69 ± 3.21 vs 15.27 ± 2.74, P = 0.032) and 12 months (18.04 ± 2.04 vs 16.96 ± 2.54, P = 0.039), while the incidence rate of retrograde ejaculation markedly lower in the former than in the latter group at 6 months (33.33% ï¼»12/36ï¼½ vs 56.25% ï¼»28/48ï¼½, P = 0.018) and 12 months (25% ï¼»9/36ï¼½ vs 47.92% ï¼»23/48ï¼½, P = 0.027). At 1, 3, 6 and 12 months after surgery, the patients in group B also showed remarkably higher QOL scores than those in group B (2.61 ± 0.81 vs 2.12 ± 0.69, P = 0.005; 2.24 ± 0.66 vs 1.94 ± 0.51,P = 0.026; 2.12 ± 0.83 vs 1.80 ± 0.53,P = 0.047; and 1.94 ± 0.65 vs 1.72 ± 0.58, P = 0.038). CONCLUSION: Modified PKEP with complete preservation of the urethral mucosa in the 11-1 o'clock position can improve urinary continence, protect erectile function and ameliorate QOL in patients with BPH.


Assuntos
Disfunção Erétil , Hiperplasia Prostática , Ressecção Transuretral da Próstata , Masculino , Humanos , Hiperplasia Prostática/complicações , Hiperplasia Prostática/cirurgia , Disfunção Erétil/cirurgia , Qualidade de Vida , Estudos Retrospectivos , Mucosa , Resultado do Tratamento
12.
Therap Adv Gastroenterol ; 16: 17562848231202133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829561

RESUMO

Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.

13.
World J Diabetes ; 14(9): 1422-1449, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37771328

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is currently recognized as one of the most serious diabetic microangiopathies and a major cause of adult blindness. Commonly used clinical approaches include etiological control, microvascular improvement, and surgical intervention, but they are ineffective and have many side effects. Oral Chinese medicine (OCM) has been used for thousands of years to treat DR and is still widely used today, but it is unclear which OCM is more effective for DR. AIM: To estimate relative effectiveness and safety profiles for different classes of OCMs for DR, and provide rankings of the available OCMs. METHODS: The search time frame was from the creation of the database to January 2023. RevMan 5.3 and Stata 14.0 software were used to perform the systematic review and Network meta-analyses (NMA). RESULTS: A total of 107 studies and 9710 patients were included, including 4767 cases in the test group and 4973 cases in the control group. Based on previous studies and clinical reports, and combined with the recommendations of Chinese guidelines for the prevention and treatment of DR, 9 OCMs were finally included in this study, namely Compound Xueshuantong Capsules, Qiming Granules, Compound Danshen Dripping Pills, Hexue Mingmu Tablets (HXMM), Qiju Dihuang Pills (QJDH), Shuangdan Mingmu Capsules (SDMM), Danggui Buxue Decoction (DGBX), Xuefu Zhuyu Decoction and Buyang Huanwu Decoction. When these nine OCMs were analyzed in combination with conventional western medicine treatment (CT) compared with CT alone, the NMA results showed that HXMM + CT has better intervention effect on the overall efficacy of DR patients, HXMM + CT has better effect on improving patients' visual acuity, SDMM + CT has better effect on inhibiting vascular endothelial growth factor, DGBX + CT has better effect on reducing fundus hemorrhage area, HXMM + CT has better effect on reducing fasting blood glucose, and QJDH + CT has better effect on reducing glycated hemoglobin. When there are not enough clinical indicators for reference, SDMM + CT or HXMM + CT treatments can be chosen because they are effective for more indicators and demonstrate multidimensional efficacy. CONCLUSION: This study provides evidence that combining OCMs with CT leads to better outcomes in all aspects of DR compared to using CT alone. Based on the findings, we highly recommend the use of SDMM or HXMM for the treatment of DR. These two OCMs have demonstrated outstanding efficacy across multiple indicators.

14.
Zhongguo Zhen Jiu ; 43(9): 1070-5, 2023 Sep 12.
Artigo em Chinês | MEDLINE | ID: mdl-37697884

RESUMO

The differences in the cognition on the location of "Jiaji" between Taoism and medical science are summarized through literature searching. In the medical field, "Jiaji" is generally described as "Jiaji Xue (point)", which is considered as EX-B 2, while, in Taoism, it is expressed as "Jiaji Guan (pass)", focusing on the crucial parts of the body. Medical scholars lay their attention to the distance of "Jiaji" lateral to the spine, in which "Jia" (place on both sides) is mostly considered. In comparison, the Taoists emphasize the central axis on the back of human body expressed as "Jiaji Gu (bone)" and "Jiaji Sanguan (three crucial parts)", in which, "Ji (spine)" is the key. Due to the therapeutic purposes of acupuncture, medical scholars focus on the communication of "Jiaji" with the body surface ultimately. Based on the inner perspective of Taoism, "Jiaji" is connoted to be the three-dimensional structural space located deeply inside of the body. The cognitive differences in the location of "Jiaji" between Taoism and medical science reflect the discrepancy in the cognitive dimensions and approaches to the human body between them, which provide the references for the textual research of "Jiaji" in traditional Chinese medicine.


Assuntos
Terapia por Acupuntura , Medicina , Humanos , Filosofias Religiosas , Cognição , Comunicação
15.
Am J Physiol Cell Physiol ; 325(4): C1119-C1130, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661920

RESUMO

Intervertebral disk degeneration (IVDD) is the major cause of low back pain. Alpha-ketoglutaric acid (α-KG), an important intermediate in energy metabolism, has various functions, including epigenetic regulation, maintenance of redox homeostasis, and antiaging, but whether it can ameliorate IVDD has not been reported. Here, we examined the impacts of long-term administration of α-KG on aging-associated IVDD in adult rats. In vivo and in vitro experiments showed that α-KG supplementation effectively ameliorated IVDD in rats and the senescence of nucleus pulposus cells (NPCs). α-KG supplementation significantly attenuated senescence, apoptosis, and matrix metalloproteinase-13 (MMP-13) protein expression, and it increased the synthesis of aggrecan and collagen II in IL-1ß-treated NPCs. In addition, α-KG supplementation reduced the levels of IL-6, phosphorylated JAK2 and STAT3, and the nuclear translocation of p-STAT3 in IL-1ß-induced degenerating NPCs. The effects of α-KG were enhanced by AG490 in NPCs. The underlying mechanism may involve the inhibition of JAK2/STAT3 phosphorylation and the reduction of IL-6 expression. Our findings may help in the development of new therapeutic strategies for IVDD.NEW & NOTEWORTHY Alpha-ketoglutaric acid (α-KG) exerted its protective effect on nucleus pulposus cells' (NPCs) degeneration by inhibiting the senescence-associated secretory phenotype and extracellular matrix degradation. The possible mechanism may be associated with negatively regulating the JAK2/STAT3 phosphorylation and the decreased IL-6 expression, which could be explained by a blockage of the positive feedback control loop between IL-6 and JAK2/STAT3 pathway.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Ratos , Epigênese Genética , Interleucina-6/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Ácidos Cetoglutáricos/farmacologia , Núcleo Pulposo/metabolismo
16.
Am J Chin Med ; 51(6): 1477-1499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37530508

RESUMO

Rosa roxburghii Tratt is a traditional Chinese plant that has been used to treat different inflammatory diseases. The purpose of this study was to investigate the mechanism of action of Rosa roxburghii Tratt extract (RRTE) against ulcerative colitis (UC) using network pharmacology and experimental validation. HPLC-Q/Orbitrap MS was used to rapidly identify the substances contained in RRTE after extracting the active components from the fruit. Then, network pharmacology combined with molecular docking was used to explore the critical target and potential mechanism of RRTE against UC using the active ingredients in RRTE as the research object. Data are presented in a visual manner. Finally, the pharmacological effects of RRTE in alleviating UC were further verified using a DSS-induced UC model of NCM460. The results showed that 25 components in RRTE were identified. A total of 250 targets of the active components and 5376 targets associated with UC were collected. Furthermore, a systematic analysis of the Protein-Protein Interaction (PPI) networks suggests that epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), and serine/threonine kinase 1 (AKT1) are critical targets for RRTE in the treatment of UC. A comprehensive regulatory network analysis showed that RRTE alleviated UC through the EGFR-mediated PI3K/Akt pathway, and molecular docking showed that active components could strongly bind to EGFR, PIK3R1, and AKT1. In addition, RRTE alleviated dextran sulfate sodium salt (DSS)-induced cell injury and significantly decreased the protein expression levels of EGFR, PIK3R1, and p-AKT in NCM460 cells in vitro. Furthermore, RRTE significantly regulated the expression of the apoptosis-related proteins Apoptotic protease-activating factor 1 (Apaf1), cleaved caspase-3, B-cell lymphoma-2 (Bcl2), and Bcl2 associated X protein (Bax). In conclusion, the components of RRTE are complex, and RRTE can relieve UC through the EGFR-mediated PI3K/Akt pathway.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Rosa , Farmacologia em Rede , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores ErbB , Medicamentos de Ervas Chinesas/farmacologia
17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37531568

RESUMO

Melatonin has been reported to play crucial roles in regulating meat quality, improving reproductive properties, and maintaining intestinal health in animal production, but whether it regulates skeletal muscle development in weaned piglet is rarely studied. This study was conducted to investigate the effects of melatonin on growth performance, skeletal muscle development, and lipid metabolism in animals by intragastric administration of melatonin solution. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets with similar body weight were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation for 23 d had no effect on growth performance, but significantly reduced serum glucose content (P < 0.05). Remarkably, melatonin increased longissimus dorsi muscle (LDM) weight, eye muscle area and decreased the liver weight in weaned piglets (P < 0.05). In addition, the cross-sectional area of muscle fibers was increased (P < 0.05), while triglyceride levels were decreased in LDM and psoas major muscle by melatonin treatment (P < 0.05). Transcriptome sequencing showed melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation. Enrichment analysis indicated that melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial structure and function. Moreover, quantitative real-time polymerase chain reaction analysis revealed that melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development, including paired box 7 (PAX7), myogenin (MYOG), myosin heavy chain (MYHC) IIA and MYHC IIB (P < 0.05), which was accompanied by increased insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 5 (IGFBP5) expression in LDM (P < 0.05). Additionally, melatonin regulated lipid metabolism and activated mitochondrial function in muscle by increasing the mRNA abundance of cytochrome c oxidase subunit 6A (COX6A), COX5B, and carnitine palmitoyltransferase 2 (CPT2) and decreasing the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acetyl-CoA carboxylase (ACC) and fatty acid-binding protein 4 (FABP4) (P < 0.05). Together, our results suggest that melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, improve mitochondrial function and decrease fat deposition in muscle.


Due to its extensive biological functions, melatonin has been widely used in animal production in recent years. The purpose of this study was to investigate the effects of melatonin on growth performance, muscle development, and lipid metabolism of weaned piglets. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation daily had no effect on growth performance, but increased muscle weight, eye muscle area, and decreased the liver weight in weaned piglets. Consistently, the cross-sectional area of myofiber increased, while triglyceride levels decreased in muscle. Melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation in muscle through transcriptome sequencing. Additionally, melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial function. Moreover, melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development. Additionally, melatonin inhibited the mRNA expression related to fat synthesis while improved mitochondrial function in muscle. Together, our results suggest melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, enhance mitochondrial function and decrease fat deposition in muscle.


Assuntos
Melatonina , Doenças dos Suínos , Animais , Suínos , Metabolismo dos Lipídeos , Melatonina/farmacologia , Melatonina/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiologia , RNA Mensageiro/genética , Suplementos Nutricionais , Hipertrofia/veterinária , Doenças dos Suínos/metabolismo
18.
Huan Jing Ke Xue ; 44(7): 3892-3901, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438288

RESUMO

In order to investigate the composition and diversity of groundwater bacterial communities in typical industrial areas in Shanghai, the Illumina MiSeq high-throughput technology was adopted to explore the correlation and response mechanism of groundwater bacterial communities and environmental factors in typical industries, combined with the analysis of groundwater tri-nitrogen, heavy metals, organic matter, and other indicators. The results showed that the ammonia nitrogen in the groundwater of the petrochemical industry was 64.49%, 32.46%, and 113.91% higher than that of the textile industry, metal products industry, and other industries (P<0.05), respectively. The main detectable indicators of organic matter were total petroleum hydrocarbons (TPH) and volatile phenol. The mass concentration of volatile phenol in groundwater of the petrochemical industry was significantly higher than that of the textile industry, metal products industry, and other industries (P<0.05). The mass concentration of arsenic in the metal products industry was 49.26% and 50.59% higher than that in the petrochemical industry and other industries (P<0.05), respectively. Chloride, manganese, sulfate, etc., were significantly different in different industries (P<0.05). The Shannon index of groundwater in the textile industry was the highest at 3.14, whereas the Shannon index and Ace index of the groundwater in the metal products industry were as low as at 2.42 and 960.46, respectively. The dominant bacterial phylum in groundwater in the industrial area was Proteobacteria, accounting for 80.05%-86.18%. Arsenic, mercury, TPH, etc. were the main influencing factors in groundwater in industrial areas, whereas the nitrifying bacteria, denitrifying bacteria, and organic matter-degrading bacteria were mostly related to groundwater environmental factors. The results of this study can provide theoretical support for groundwater pollution risk management and microbial remediation in petrochemical and metal product industrial areas.


Assuntos
Arsênio , Água Subterrânea , Petróleo , China , Bactérias/genética , Nitrogênio , Fenol , Fenóis
19.
Am J Chin Med ; 51(6): 1527-1546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37518098

RESUMO

Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. Abelmoschus manihot (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10[Formula: see text]). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-[Formula: see text] levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10[Formula: see text] mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on Eggerthellaceae, Sutterellaceae, Erysipelotrichaceae, Burkholderiaceae, Desulfovibrionaceae, and Enterococcaceae were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.


Assuntos
Abelmoschus , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Interleucina-10 , Medicina Tradicional Chinesa , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colo , Inflamação , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
20.
Chin Med ; 18(1): 80, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386638

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) has a complex pathological mechanism and is difficult to cure. The traditional medicine Du Huo Ji Sheng Tang (DHJST) has been used for the treatment of KOA for more than one thousand years, but its mechanism for treating KOA has not been revealed. In our previous study, we confirmed that DHJST inhibited the activation of NLRP3 signaling in rats and humans. In the current study, we aimed to determine how DHJST inhibits NLRP3 to alleviate knee cartilage damage. METHODS: Mice were injected with NLRP3 shRNA or Notch1-overexpressing adenovirus into the tail vein to construct systemic NLRP3 low-expressing or Notch1 high-expressing mice. Mice were injected with papain into the knee joint to replicate the KOA model. DHJST was used to treat KOA model mice with different backgrounds. The thickness of the right paw was measured to evaluate toe swelling. The pathohistological changes and the levels of IL-1ß, MMP2, NLRP3, Notch1, collagen 2, collagen 4, HES1, HEY1, and Caspase3 were detected by HE staining, ELISA, immunohistochemical staining, western blotting, or real-time qPCR. RESULTS: DHJST reduced tissue swelling and serum and knee cartilage IL-1ß levels, inhibited cartilage MMP2 expression, increased collagen 2 and collagen 4 levels, decreased Notch1 and NLRP3 positive expression rates in cartilage, and decreased HES1 and HEY1 mRNA levels in KOA model mice. In addition, NLRP3 interference decreased cartilage MMP2 expression and increased collagen 2 and collagen 4 levels without affecting the expression levels of notch1, HES1 and HEY1 mRNA levels in the synovium of KOA mice. In KOA mice with NLRP interference, DHJST further reduced tissue swelling and knee cartilage damage in mice. Finally, Notch1-overexpressing mice not only showed more severe tissue swelling and knee cartilage degradation but also abolished the therapeutic effect of DHJST on KOA mice. Importantly, the inhibitory effects of DHJST on the mRNA expression of NLRP3, Caspase3 and IL-1ß in the knee joint of KOA mice were completely limited after Notch1 overexpression. CONCLUSION: DHJST significantly reduced inflammation and cartilage degradation in KOA mice by inhibiting Ntoch1 signaling and its subsequent NLRP3 activation in the knee joint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA