Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 224: 256-265, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257363

RESUMO

Bio-based controlled release fertilizers (BCRFs) are cost-effective and renewable thus gradually replacing petroleum-based controlled release fertilizers (CRFs). However, most of the study mainly focused on modifying BCRFs to improve controlled-release performance. It is necessary to further increase the functionality of BCRF for expanding the application. A multifunctional double layered bio-based CRF (DCRF) was prepared. Urea was used as the core of fertilizer, bio-based polyurethane was used as the inner coating, and sodium alginate and copper ions formed the hydrogel as the outer coating. In addition, mesoporous silica nanoparticles loaded with sodium selenate was used to modify the sodium alginate hydrogel (MSN@Se hydrogel). The results showed that the nitrogen longevity of the DCRF was much better than that of urea and BCRF. The selenium nutrient longevity of the DCRF was 40 h, much longer than that of sodium selenate. The DCRF improved the yield and nutritive value of cherry radish (Raphanus sativus L. var.radculus pers) with the elevated contents of selenium, an essential trace element. Moreover, the DCRF showed inhibitory effect on Fusarium oxysporum Schltdl. and could resist soil-borne fungal diseases continuously. Overall, this multifunctional fertilizer has great potential for expanding the use of BCRFs for sustainable development of agriculture.


Assuntos
Raphanus , Selênio , Poliuretanos , Fertilizantes/análise , Preparações de Ação Retardada , Antifúngicos , Ácido Selênico , Solo , Nitrogênio/análise , Ureia
2.
ACS Appl Mater Interfaces ; 14(50): 56046-56055, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484480

RESUMO

Bio-based polyurethanes are promising for the controlled release of nutrients and fertilizers, but their toughness and plasticity need to be improved. We developed a smooth, dense, elastic, and indestructible bio-based polyurethane (BPU) coating with a nutrient controlled release ∼150% superior, a tensile strength ∼300% higher, and a toughness ∼1200% higher than those for the original BPU coating. Through a one-step reaction of soybean oil polyols (accounting for more than 60%), isocyanate, and benzil dioxime, the dynamic covalent network based on oxime-carbamate replaces part of irreversible covalent cross-linking. The dynamic fracture-bonding reaction in the modified coating BPU can effectively promote the hydrogen bond recombination and oxime-carbamate chain migration in the coating process, which avoids the structural defects caused by coating tear and fertilizer collision. This work provides a simple and versatile strategy for building controlled-release fertilizer coatings.


Assuntos
Fertilizantes , Poliuretanos , Poliuretanos/química , Preparações de Ação Retardada/química , Isocianatos , Óleo de Soja/química
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445696

RESUMO

The prediction of drug-target affinity (DTA) is a crucial step for drug screening and discovery. In this study, a new graph-based prediction model named SAG-DTA (self-attention graph drug-target affinity) was implemented. Unlike previous graph-based methods, the proposed model utilized self-attention mechanisms on the drug molecular graph to obtain effective representations of drugs for DTA prediction. Features of each atom node in the molecular graph were weighted using an attention score before being aggregated as molecule representation. Various self-attention scoring methods were compared in this study. In addition, two pooing architectures, namely, global and hierarchical architectures, were presented and evaluated on benchmark datasets. Results of comparative experiments on both regression and binary classification tasks showed that SAG-DTA was superior to previous sequence-based or other graph-based methods and exhibited good generalization ability.


Assuntos
Desenvolvimento de Medicamentos/métodos , Previsões/métodos , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Teóricos , Redes Neurais de Computação , Preparações Farmacêuticas
4.
J Agric Food Chem ; 68(47): 13620-13631, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33140972

RESUMO

Although solid-phase activation of lignite using a nanocatalyst has great potential in producing low-cost and sustainable humic acid, the large-scale application of this technology still faces challenges because of the high price and toxicity of the nanocatalyst. Additionally, the specific molecular components of humic acid in activated lignite remain unknown. In this work, a multifunctional molybdate-phosphorus hierarchical hollow nanosphere (Mo-P-HH) catalyst was successfully manufactured by a simple way followed by phosphorization. In comparison with a commercial Pd/C catalyst, the multifunctional Mo-P-HH catalyst was more effective in producing water-soluble humic acid with small molecular functional groups from lignite via solid-phase activation. Moreover, Fourier transform ion cyclotron resonance mass spectrometry revealed the molecular compositions of humic acid in activated lignite. Compared with that from raw lignite, the humic acid after Mo-P-HH activation had less aromatic structure but higher content of lipids, proteins, amino sugar, and carbohydrates. In addition, the activated humic acid simulated seed germination and seedling growth. Therefore, this study provided a high-performance hierarchical hollow nanocatalyst for activation of humic acid and also offered the theoretical basis for the application of humic acid in agriculture.


Assuntos
Nanosferas , Oryza , Carvão Mineral , Germinação , Substâncias Húmicas/análise , Molibdênio , Fósforo , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA