Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int Immunopharmacol ; 126: 111321, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38041955

RESUMO

Vitamin C (VitC) presents excellent anti-tumor effect for long time. Recently, high dose VitC achieved by intravenous administration manifests superior anti-tumor effect. However, the functions and detailed mechanisms of high dose VitC's role in cancer immunity are not fully understood. This study investigates the effect of high dose VitC on PD-L1 expression in triple negative breast cancer (TNBC) and the potential mechanism. Results showed VitC inhibited PD-L1 expression in breast cancer cell lines and enhanced anti-tumor effects of T cells. Furthermore, we found VitC inhibited PD-L1 transcription through ROS-pSTAT3 signal pathways. Consistent with in vitro results, in vivo study showed VitC suppressed tumor growth in immunocompetent mice and enhanced CD8+ T cells infiltration and function in tumor microenvironment. Our findings identify the effects of high dose VitC on PD-L1 expression and provide a rationale for the use of high dose VitC as immunomodulator for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Ácido Ascórbico/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Bioorg Chem ; 135: 106493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996509

RESUMO

Cyclovirobuxine-D (CVB-D) is a Buxus alkaloid and a major active constituent in the Chinese medicinal herb Buxus microphylls. Traditionally, the natural alkaloid cyclovirobuxine-D has a long history of use as a traditional Chinese medicine for cardiovascular diseases as well as to treat a wide variety of medical conditions. As we found that CVB-D inhibited T-type calcium channels, we designed and synthesized a variety of fragments and analogues and evaluated them for the first time as new Cav3.2 inhibitors. Compounds 2-7 exhibited potency against Cav 3.2 channels, and two of them were more active than their parent molecules. As a result of the in vivo experiments, both compounds 3 and 4 showed significantly reduced writhes in the acetic acid-induced writhing test. Studies of molecular modeling have identified possible mechanism(s) of Cav3.2 binding. Moreover, the relationship between structure and activity was studied in a preliminary manner. Our results indicated that compounds 3 and 4 could play an important role in the discovery and development of novel analgesics.


Assuntos
Alcaloides , Antineoplásicos , Buxus , Canais de Cálcio Tipo T , Alcaloides/farmacologia , Analgésicos/farmacologia , Buxus/química
3.
Bioorg Med Chem ; 31: 115986, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412412

RESUMO

Sinomenine is an alkaloid derived from Chinese medicinal plant Sinomenium acutum. Our previous studies suggested that sinomenine can inhibit the metastasis of breast cancer. However, whether sinomenine can inhibit the metastasis characteristics of breast cancer side population (SP) cells is still unknown. In present study, we isolated the side population (SP) cells from MDA-MB-231 cells by fluorescence-activated cell sorting (FACS). MDA-MB-231 SP cells were treated with different concentrations of sinomenine at the absence or presence of hypoxia, and cell viability were measured by CCK-8 assay. The transwell invasive assay were conducted to assess of the effect of sinomenine on the invasion of hypoxic MDA-MB-231 SP cells. The protein expression was detected by Western blot assay. Sinomenine inhibited the cell viability and invasion of hypoxic MDA-MB-231 SP cells. Western blot assay results showed that the upregulation of MMP-2 and MMP-9 by hypoxia was inversed by sinomenine. Additionally, it was found that sinomenine suppressed the activation of PI3K/Akt/mTOR pathway under hypoxia in MDA-MB-231 SP cells. Moreover, the inhibiton of sinomenine on metastasis of hypoxic MDA-MB-231SP cells and PI3K/Akt/mTOR pathway could be rescued by PI3K activator IGF-1. Our study suggested that sinomenine inhibits invasion of breast cancer SP cells under hypoxia through PI3K/Akt/mTOR pathway.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Morfinanos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
4.
PLoS Genet ; 14(12): e1007880, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586356

RESUMO

Signaling pathways that control the activities in non-photosynthetic plastids, important sites of plant metabolism, are largely unknown. Previously, we demonstrated that WRKY2 and WRKY34 transcription factors play an essential role in pollen development downstream of mitogen-activated protein kinase 3 (MPK3) and MPK6 in Arabidopsis. Here, we report that GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 1 (GPT1) is a key target gene of WRKY2/WRKY34. GPT1 transports glucose-6-phosphate (Glc6P) into plastids for starch and/or fatty acid biosynthesis depending on the plant species. Loss of function of WRKY2/WRKY34 results in reduced GPT1 expression, and concomitantly, reduced accumulation of lipid bodies in mature pollen, which leads to compromised pollen viability, germination, pollen tube growth, and male transmission in Arabidopsis. Pollen-specific overexpression of GPT1 rescues the pollen defects of wrky2 wrky34 double mutant. Furthermore, gain-of-function activation of MPK3/MPK6 enhances GPT1 expression; whereas GPT1 expression is reduced in mkk4 mkk5 double mutant. Together, this study revealed a cytoplasmic/nuclear signaling pathway capable of coordinating the metabolic activities in plastids. High-level expression of GPT1 at late stages of pollen development drives Glc6P from cytosol into plastids, where Glc6P is used for fatty acid biosynthesis, an important step of lipid body biogenesis. The accumulation of lipid bodies during pollen maturation is essential to pollen fitness and successful reproduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pólen/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Lipogênese , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
5.
Drug Des Devel Ther ; 12: 3961-3972, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510404

RESUMO

PURPOSE: Baicalein, a widely used Chinese herbal medicine, has shown anticancer effects on many types of human cancer cell lines. However, little is known about the underlying mechanism in human breast cancer cells. In this study, we examined the apoptotic and autophagic pathways activated following baicalein treatment in human breast cancer cells in vitro and in vivo. MATERIALS AND METHODS: In in vitro study, we used MTT and clone formation assay to confirm the inhibitory role of baicalein on proliferation of MCF-7 and MDA-MB-231 breast cancer cells. Apoptosis was detected employing Hoechst 33258 staining, JC-1 staining, and flow cytometry. Autophagy was monitored by acridine orange staining and transmission electron microscopy observation. Quantitative real-time PCR and Western blot analysis were employed to study the effects of baicalein on PI3K/AKT signaling components of MCF-7 and MDA-MB-231 breast cancer cells. In in vivo study, the effect of baicalein was tested with a breast cancer cells transplantation tumor model. RESULTS: Our study showed that baicalein has the potential to suppress cell proliferation, induce apoptosis and autophagy of breast cancer cells in vitro and in vivo. Furthermore, baicalein significantly downregulated the expression of p-AKT, p-mTOR, NF-κB, and p-IκB while enhancing the expression of IκB in MCF-7 and MDA-MB-231 cells. It also decreased the p-AKT/AKT and p-mTOR/mTOR ratios. CONCLUSION: Our study demonstrated that baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting the PI3K/AKT signaling pathway in vivo and vitro. Our study revealed that baicalein may be a potential therapeutic agent for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Flavanonas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Flavanonas/administração & dosagem , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Conformação Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Drug Des Devel Ther ; 10: 1419-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27143851

RESUMO

BACKGROUND: The flavonoid baicalein, a historically used Chinese herbal medicine, shows a wide range of biological and pharmaceutical effects, among which its potent antitumor activity has raised great interest in recent years. However, the molecular mechanism involved in the antimetastatic effect of baicalein remains poorly understood. This study aimed to verify the inhibitory effects of baicalein on metastasis of MDA-MB-231 human breast cancer cells both in vitro and in vivo, as well as to investigate the related mechanisms. METHODS: MTT assay was used to examine the inhibition of baicalein on proliferation of MDA-MB-231 cells. Wound healing assay and the in vitro invasion assay was carried out to investigate the effects of baicalein on migration and invasion of MDA-MB-231 cells, respectively. In order to explore the effects of baicalein on tumor metastasis in vivo, xenograft nude mouse model of MDA-MB-231 cells was established. Animals were randomly divided into four groups (control, therapy group, and low-dose and high-dose prevention group, n=6), and treated with baicalein as designed. Following sacrifice, their lungs and livers were collected to examine the presence of metastases. qRT-PCR and Western blot were performed to study the effects of baicalein on expression of SATB1, EMT-related molecules, and Wnt/ß-catenin signaling components of MDA-MB-231 cells as well as the metastatic tissue. Effects of baicalein on the expression of target proteins in vivo were also analyzed by immunohistochemistry. RESULTS: Our results indicated that baicalein suppressed proliferation, migration, and invasion of MDA-MB-231 cells in a time- and dose-dependent manner. Based on assays carried out in xenograft nude mouse model, we found that baicalein inhibited tumor metastasis in vivo. Furthermore, baicalein significantly decreased the expression of SATB1 in MDA-MB-231 cells. It suppressed the expression of vimentin and SNAIL while enhancing the expression of E-cadherin. Baicalein also downregulated the expression of Wnt1 and ß-catenin proteins and transcription level of Wnt/ß-catenin-targeted genes. CONCLUSION: Our results demonstrate that baicalein has the potential to suppress breast cancer metastasis, possibly by inhibition of EMT, which may be attributed to downregulation of both SATB1 and the Wnt/ß-catenin pathway. Taken together, baicalein may serve as a promising drug for metastasis treatment of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavanonas/farmacologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Metástase Neoplásica/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Flavanonas/química , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Clin Oncol ; 4(4): 472-476, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27073644

RESUMO

Breast cancer is one of the most commonly occurring female malignant tumors. According to the 2012 GLOBOCAN statistics, produced by the International Agency for Research On Cancer ('IARC'), nearly 1.7 million women were diagnosed with breast cancer, with 522,000 related deaths: An increase in the incidence of breast cancer and associated mortality by nearly 18% from 2008. Metastasis is the final step in breast cancer progression, and represents the most common cause of mortality in patients with breast cancer. Therefore, a search for low-toxicity, safe and effective anti-breast cancer drugs in the form of natural compounds has become an intense focus of research. Baicalein, a widely used Chinese herbal medicine, has extensive antitumor activity. The present review briefly describes the research that has been performed on the association between baicalein and breast cancer metastasis, and further illustrates the influence of baicalein on the underlying mechanisms of breast cancer metastasis, adding a novel theory basis for baicalein antitumor research. In conclusion, baicalein may represent a promising target for the prevention and therapy of breast cancer.

8.
Biochem Biophys Res Commun ; 464(3): 705-10, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26166821

RESUMO

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial-mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas de Transporte/metabolismo , Interleucina-4/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Morfinanos/farmacologia , NF-kappa B/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Proteínas I-kappa B/metabolismo , MicroRNAs/genética , Mimetismo Molecular , Morfinanos/administração & dosagem , NF-kappa B/antagonistas & inibidores , Invasividade Neoplásica/prevenção & controle , Fitoterapia
9.
PLoS Genet ; 10(5): e1004384, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830428

RESUMO

Plant male gametogenesis involves complex and dynamic changes in gene expression. At present, little is known about the transcription factors involved in this process and how their activities are regulated. Here, we show that a pollen-specific transcription factor, WRKY34, and its close homolog, WRKY2, are required for male gametogenesis in Arabidopsis thaliana. When overexpressed using LAT52, a strong pollen-specific promoter, epitope-tagged WRKY34 is temporally phosphorylated by MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs, or MPKs), at early stages in pollen development. During pollen maturation, WRKY34 is dephosphorylated and degraded. Native promoter-driven WRKY34-YFP fusion also follows the same expression pattern at the protein level. WRKY34 functions redundantly with WRKY2 in pollen development, germination, and pollen tube growth. Loss of MPK3/MPK6 phosphorylation sites in WRKY34 compromises the function of WRKY34 in vivo. Epistasis interaction analysis confirmed that MPK6 belongs to the same genetic pathway of WRKY34 and WRKY2. Our study demonstrates the importance of temporal post-translational regulation of WRKY transcription factors in the control of developmental phase transitions in plants.


Assuntos
Proteínas de Arabidopsis/genética , Gametogênese/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Pólen/crescimento & desenvolvimento , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Plantas Geneticamente Modificadas , Pólen/genética , Regiões Promotoras Genéticas
10.
BMC Complement Altern Med ; 13: 150, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815868

RESUMO

BACKGROUND: Angiogenesis is closely related to the growth, invasion and metastasis of tumors, also considered as the key target of anticancer therapy. Scutellaria barbata D. Don (S. barbata), a traditional Chinese medicine, is being used to treat various diseases, including cancer. However, the antitumor molecular mechanism of S. barbata was still unclear. This study aimed to investigate the inhibitory effects of the total flavones in S. barbata (TF-SB) on angiogenesis. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with various concentrations of TF-SB. Cell viability was examined using the MTT assay. The scratch assay was used to detect the migration of HUVECs after treatment with TF-SB. The ability of HUVECs to form network structures in vitro was demonstrated using the tube formation assay. The chick embryo chorioallantoic membrane assay was performed to detect the in vivo anti-angiogenic effect. The expression of VEGF was measured by the enzyme-linked immunosorbent. RESULTS: Results showed that TF-SB inhibited the proliferation and migration of HUVECs in a dose- dependent manner. Simultaneously, TF-SB significantly suppressed HUVEC angiogenesis in vitro and in vivo. Furthermore, VEGF was downregulated in both HUVECs and MHCC97-H cells after TF-SB treatment. CONCLUSION: TF-SB could suppress the process of angiogenesis in vitro and in vivo. TF-SB potentially suppresses angiogenesis in HUVECs by regulating VEGF. These findings suggested that TF-SB may serve as a potent anti-angiogenic agent.


Assuntos
Inibidores da Angiogênese/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Scutellaria/química , Animais , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Asian Pac J Cancer Prev ; 14(1): 261-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23534734

RESUMO

Scutellaria barbata D. Don (S. barbata), a traditional Chinese medicine, is used to treat cancers, inflammation, and urinary diseases. This study aimed to determine any protective effects of S. barbata crude extract (CE-SB) against rat liver tumorigenesis induced by diethylnitrosamine (DENA). Liver malfunction indices in serum were measured by biochemical examination. Hematoxylin and eosin staining was performed to examine liver pathology. Contents of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in liver homogenates to evaluate oxidative stress. The levels of liver malfunction indices in the CE-SB groups, especially in the CE-SB high dose group, were lower than that of the model group (P<0.05). The results from histological examination indicated that the number of liver nodules in the CE-SB groups decreased compared with the model group (P<0.05). Content of MDA determined in liver was significantly decreased, and level of SOD elevated by CE-SB. CE-SB can inhibit experimental liver tumorigenesis and relieve hepatic injury in rats.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/prevenção & controle , Fígado/enzimologia , Fígado/patologia , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Peso Corporal/efeitos dos fármacos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Dietilnitrosamina , Glutationa Transferase/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Masculino , Malondialdeído/sangue , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Scutellaria , Albumina Sérica/metabolismo , Superóxido Dismutase/sangue , alfa-L-Fucosidase/metabolismo , gama-Glutamiltransferase/metabolismo
12.
Mol Plant ; 1(4): 645-58, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19825569

RESUMO

Mitogen-activated protein kinase (MAPK) and leucine-rich repeat receptor-like kinase (LRR-RLK) signaling pathways have been shown to regulate diverse aspects of plant growth and development. In Arabidopsis, proper anther development relies on intercellular communication to coordinate cell proliferation and differentiation. Two closely related genes encoding MAPKs, MPK3 and MPK6, function redundantly in regulating stomatal patterning. Although the mpk6 mutant has reduced fertility, the function of MPK3 and MPK6 in anther development has not been characterized. Similarly, the ERECTA (ER), ERECTA-LIKE1 (ERL1) and ERL2 genes encoding LRR-RLKs function together to direct stomatal cell fate specification and the er-105 erl1-2 erl2-1 triple mutant is sterile. Because the mpk3 mpk6 double null mutant is embryo lethal, anther development was characterized in the viable mpk3/+ mpk6/- and er-105 erl1-2 erl2-1 mutants. We found that both mutant anthers usually fail to form one or more of the four anther lobes, with the er-105 erl1-2 erl2-1 triple mutant exhibiting more severe phenotypes than those of the mpk3/+ mpk6/- mutant. The somatic cell layers of the differentiated mutant lobes appeared larger and more disorganized than that of wild-type. In addition, the er-105 erl1-2 erl2-1 triple mutant has a reduced number of stamens, the majority of which possess completely undifferentiated or under-differentiated anthers. Furthermore, sometimes, the mpk3/+ mpk6/- mutant anthers do not dehisce, and the er-105 erl1-2 erl2-1 anthers were not observed to dehisce. Therefore, our results indicate that both ER/ERL1/ERL2 and MPK3/MPK6 play important roles in normal anther lobe formation and anther cell differentiation. The close functional relationship between these genes in other developmental processes and the similarities in anther developmental phenotypes of the two types of mutants reported here further suggest the possibility that these genes might also function in the same pathway to regulate anther cell division and differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Flores/enzimologia , Flores/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/ultraestrutura , Diferenciação Celular , Flores/citologia , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação/genética , Tamanho do Órgão , Fenótipo , Infertilidade das Plantas , Pólen/citologia , Pólen/genética , Pólen/ultraestrutura , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA