Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 101: 494-500, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501771

RESUMO

OBJECTIVE: To determine the effectiveness of GRGM-13 on oxidative stress induced apoptosis of retinal ganglion cells (RGCs) and revealed its possible mechanism. MATERIALS AND METHODS: Caspase-3 activity, MDA level, and glutathione peroxidase level were detected by Caspase-3 assay kit, Lipid Peroxidation MDA Assay Kit, and Total Glutathione Peroxidase Assay Kit, respectively. Protein levels of Bax, Bcl-2, p-p38 and p38 were observed by Western Blot. Reactive oxygen species assay kit was used to determine intracellular ROS level. Apoptotic cells were measured by flow cytometry. RESULTS: GRGM-13 inhibited apoptosis of RGCs and ROS level in rat retinal tissue and RGC-5 cells, and the decrease degree strengthened with the increase of GRGM-13 concentration. In addition, ROS upregulated p-p38 expression, while GRGM-13 reversed this effect. We also found that p38 inhibitor SB202190 did not change L-glutamate (Glu) or H2O2-induced ROS level, while SB202190 inhibited apoptosis of RGC-5 cells. Finally, we observed that P2 × 7R agonist BzATP reversed the inhibition effect of GRGM-13 on RGC-5 cell apoptosis, ROS level and p-p38 expression, while si-P2 × 7R inhibited oxidative stress-induced phosphorylation of p38. CONCLUSION: GRGM-13 could inhibit oxidative stress-induced RGCs apoptosis via inhibiting P2RX7/p38 MAPK pathway, which revealed the possible mechanism of GRGM-13 on stress-induced RGCs apoptosis and provided new Chinese medicine for the treatment of glaucoma.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Medicina Tradicional da Mongólia/métodos , Medicina Tradicional Tibetana/métodos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/metabolismo
2.
Int J Ophthalmol ; 11(3): 363-368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600167

RESUMO

AIM: To explore the concrete mechanism of a Mongolian compound medicine-Gurigumu-13 (GRGM) for glaucoma treatment. METHODS: DBA/2J mice, as glaucoma models, were intragastric administrated with GRGM to study the effect of GRGM on retinal ganglion cells (RGCs). The loss of RGCs was evaluated with the number of RGCs and axons. The expression of the target protein of RGCs or mouse retinas was determined by Western blot. The relative content of malondialdehyde (MDA) was examined by ELISA assay. RESULTS: GRGM distinctly improved retina damage via increasing the number of neurons, RGCs and axons in a concentration dependent manner. Meanwhile, GRGM obviously decreased the high level of MDA and the expression of oxidative stress-related proteins in retinas of DBA/2J mice, but promoted the expression of antioxidant proteins. Additionally, GRGM also significantly inhibited the protein expression of Bip and Chop, which were markers of endoplasmic reticulum stress-induced apoptosis. CONCLUSION: GRGM have obvious protective effects on RGCs in DBA/2J mice, and increase the number of RGCs and axons via inhibiting oxidative stress and endoplasmic reticulum stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA