Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 30(3-4): 115-130, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37930721

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, owing to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results. In this study, Pectin-Pluronic® F-127 hydrogel as scaffolds were fabricated to provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs), which has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. Then, the BMSCs/E2 MPs/scaffolds system was injected into the uterine cavity of mouse endometrial injury model for treatment. At 4 weeks after transplantation, the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cell (EEC) markers was upregulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Therefore, exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2 and provide optimal estrogenic response.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Feminino , Camundongos , Medula Óssea , Cápsulas/metabolismo , Ratos Sprague-Dawley , Transplante de Células-Tronco Mesenquimais/métodos , Endométrio/metabolismo , Modelos Animais de Doenças , Pectinas
2.
J Biomed Nanotechnol ; 17(9): 1798-1805, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688324

RESUMO

A pectin-oligochitosan microcapsule system has recently been developed for novel oxygen therapeutic design. To improve the stability of the pectin-oligochitosan microcapsules in physiological conditions, both covalent (glutaraldehyde) and noncovalent (Mn2+ and Ca2+) cross-linkers were tested. The chemistry and morphology of the microcapsules were studied using FTIR and SEM, respectively. Results showed that glutaraldehyde is an effective cross-linker, even at low concentrations and short incubation times, and the glutaraldehyde cross-linking does not negatively impact the morphology of the microcapsules. Moreover, it was confirmed that the hemoglobin could be retained within the microcapsules with a minimal release.


Assuntos
Oxigênio , Pectinas , Cápsulas , Eritrócitos
3.
Pharm Dev Technol ; 25(2): 260-265, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31709858

RESUMO

Pectin-based hydrogel microcarriers have shown promise for drug delivery to the colonic region. Microcarriers must remain stable throughout the upper gastrointestinal tract for effective colonic delivery, an issue that traditional pectin-based microcarriers have faced. The positively-charged natural biopolymer oligochitosan and divalent cation Ca2+ were used to dually cross-link pectin-based hydrogel microcarriers to improve carrier stability through simulated gastric and intestinal environments. Microcarriers were characterized with Scanning Electron Microscope and Fourier-Transform Infrared analysis. An optical microscope was used to observe the change of microcarrier size and morphology over time in the simulated gastrointestinal environments. Fluorescently-labeled Dextran was used as a model drug for this system. Calcium-Oligochitosan-Pectin microcarriers exhibited relatively small drug release in the upper gastrointestinal regions and were responsive to the high pH and enzymatic activity of simulated colonic environment (over 94% release after 2 h), suggesting great potential for colonic drug delivery.


Assuntos
Cálcio/química , Quitina/análogos & derivados , Colo/efeitos dos fármacos , Portadores de Fármacos/química , Pectinas/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Quitina/química , Quitosana , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Oligossacarídeos , Solubilidade/efeitos dos fármacos
4.
J Appl Biomater Funct Mater ; 17(1): 2280800018807108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30803313

RESUMO

PURPOSE:: Bioprinting is an alternative method for constructing tissues/organs for transplantation. This study investigated the cross-linker influence and post-printing modification using oligochitosan and chitosan for stability improvement. METHODS:: Oligochitosan was tested as a novel cross-linker to replace Ca2+ for pectin-based bio-ink. Oligochitosan (2 kD) and different molecular weight of chitosan were used to modify the bioprinted scaffold. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to characterize the scaffolds. RESULTS:: Oligochitosan failed to serve as a viable cross-linker. Successful post-printing modification was confirmed by FTIR and SEM analyses. CONCLUSION:: Regarding post-modification, chitosan-treated scaffolds showed enhanced stability compared to untreated scaffolds. In particular, scaffolds modified with 150 kD chitosan exhibited the highest stability.


Assuntos
Bioimpressão/métodos , Pectinas/química , Alicerces Teciduais/química , Cálcio/química , Quitina/análogos & derivados , Quitina/química , Quitosana , Tinta , Microscopia Eletrônica de Varredura , Oligossacarídeos , Poloxâmero/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Technol Health Care ; 25(4): 651-655, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28436403

RESUMO

One major challenge of bioprinting is to develop a viable bioink to act as an extracellular matrix. This study investigated a novel method for bioprinting using a pectin based bioink. Besides pectin, Pluronic® F-127 was incorporated into the bioink to obtain the desired shape during the initial bioprinting process at 37∘C. Once an object was printed it was treated with Ca2+ (pectin cross-linker) to create the final tissue/organ structure. The results indicated that pectin/Pluronic® F-127 is a potential bioink. Moreover, this methodology provides a novel and fast approach for bioprinting.


Assuntos
Bioimpressão/métodos , Matriz Extracelular , Pectinas/química , Alicerces Teciduais , Cálcio/química , Cátions Bivalentes , Humanos , Poloxâmero/química
6.
Pharm Dev Technol ; 21(1): 127-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25255173

RESUMO

Pectin-based hydrogel carriers have been studied and shown to have promising applications for drug delivery to the lower GI tract, especially to the colonic region. However, making sure these hydrogel carriers can pass through the upper GI tract and reach the targeted regions, after oral administration, still remains a challenge to overcome. A solution to this problem is to promote stronger cross-linking interactions within the pectin-based hydrogel network. The combined usage of a divalent cation (Ca(2+)) and the cationic biopolymer oligochitosan has shown to improve the stability of pectin-based hydrogel systems - suggesting that these two cross-linkers may be used to eventually help improve pectin-based hydrogel systems for colonic drug delivery methods.


Assuntos
Colo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Pectinas/química , Colo/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Pectinas/administração & dosagem
7.
J Appl Biomater Funct Mater ; 13(4): e326-31, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26616754

RESUMO

PURPOSE: To develop and characterize a microscale pectin-oligochitosan hydrogel microcapsule system that could be applied in such biological fields as drug delivery, cell immobilization/encapsulation, and tissue engineering. METHODS: Microscale pectin-oligochitosan hydrogel microcapsules were prepared by using the vibration/electrostatic spray method. The morphology and chemistry of the hydrogel microcapsules were characterized by using scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. The designed hydrogel microcapsule system was then used to study the responsiveness of the microcapsules to different simulated human body fluids as well as cell encapsulation. RESULTS: The designed hydrogel microcapsule system exhibited a large surface area-to-volume ratio (red blood cell-shaped) and great pH/enzymatic responsiveness. In addition, this system showed the potential for controlled drug delivery and three-dimensional cell culture. CONCLUSION: This system showed a significant potential not only for bioactive-agent delivery, especially to the lower gastrointestinal (GI) tract, but also as a three-dimensional niche for cell culture. In particular, the hydrogel microcapsule system could be used to create artificial red-blood-cells as well as blood substitutes.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Cápsulas/química , Quitina/análogos & derivados , Quitina/química , Quitosana , Eritrócitos/química , Escherichia coli/química , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Oligossacarídeos , Pectinas/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Acta Biomater ; 10(2): 831-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516867

RESUMO

In this study, thermally responsive polymeric nanoparticle-encapsulated curcumin (nCCM) was prepared and characterized. The nCCM is ≈ 22 and 300 nm in diameter at 37 and 22 °C, respectively. The smaller size of the nCCM at 37 °C was found to significantly facilitate its uptake in vitro by human prostate adenocarcinoma PC-3 cancer cells. However, the intracellular nCCM decreases rapidly (rather than plateaus) after reaching its peak at ≈ 1.5 h during a 3-day incubation of the PC-3 cells with nCCM. Moreover, a mild hyperthermia (with negligible cytotoxicity alone) at 43 °C applied between 1 and 1.5 h during the 3-day incubation not only increases the peak uptake but also alters intracellular distribution of nCCM (facilitating its delivery into cell nuclei), which helps to retain a significantly much higher level of intracellular curcumin. These effects of mild hyperthermia could be due in part to the thermal responsiveness of the nCCM: they are more positively charged at 43 °C and can be more easily attracted to the negatively charged nuclear membrane to enter nuclei as a result of electrostatic interaction. Ultimately, a combination of the thermally responsive nCCM and mild hyperthermia significantly enhances the anticancer capability of nCCM, resulting in a more than 7-fold decrease in its inhibitory concentration to reduce cell viability to 50% (IC50). Further mechanistic studies suggest injury pathways associated with heat shock proteins 27 and 70 should contribute to the enhanced cancer cell destruction by inducing cell apoptosis and necrosis. Overall, this study demonstrates the potential of combining mild hyperthermia and thermally responsive nanodrugs such as nCCM for augmented cancer therapy.


Assuntos
Curcumina/uso terapêutico , Hipertermia Induzida , Nanopartículas/química , Neoplasias/patologia , Neoplasias/terapia , Temperatura , Linhagem Celular Tumoral , Quitosana/química , Terapia Combinada , Curcumina/química , Humanos , Espaço Intracelular/química , Espectroscopia de Ressonância Magnética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poloxâmero/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA