Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(22): 5977-5984, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114203

RESUMO

Plant-derived exosome-like nanoparticles(PELNs) are a class of membranous vesicles with diameters approximately ranging from 30 to 300 nm, isolated from plant tissues. They contain components such as proteins, lipids, and nucleic acids. PELNs play an important role in the metabolism of plant substances and immune defense, and can also cross-regulate the physiological activities of fungi and animal cells, showing significant potential applications. In recent years, research on PELNs has significantly increased, highlighting three main issues:(1) the mixed sources of plant materials for PELNs;(2) the lack of a unified system for isolating and characterizing PELNs;(3) the urgent need to elucidate the molecular mechanisms underlying the cross-regulation of biological functions by PELNs. This article focused on these concerns. It began by summarizing the biological origin and composition of PELNs, discussing the techniques for isolating and characterizing PELNs, and analyzing their biomedical applications and potential future research directions., aiming to promote the establishment of standardized research protocols for PELNs and provide theoretical references for in-depth exploration of the mechanisms underlying PELNs' cross-regulatory effects.


Assuntos
Exossomos , Nanopartículas , Ácidos Nucleicos , Animais , Exossomos/metabolismo , Proteínas/metabolismo , Plantas/metabolismo
2.
Mater Horiz ; 9(5): 1489-1494, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35293903

RESUMO

Intracellular bacterial infections are difficult to treat, and in the case of Salmonella and related infections, can be life threatening. Antibiotic treatments for intracellular infections face challenges including cell penetration and intracellular degradation that both reduce antibiotic efficacy. Even when treatable, the increased dose of antibiotics required to counter infections can strongly impact the microbiome, compromising the native roles of beneficial non-pathogenic species. Bioorthogonal catalysis provides a new tool to combat intracellular infections. Catalysts embedded in the monolayers of gold nanoparticles (nanozymes) bioorthogonally convert inert antibiotic prodrugs (pro-antibiotics) into active species within resident macrophages. Targeted nanozyme delivery to macrophages was achieved through mannose conjugation and subsequent uptake VIA the mannose receptor (CD206). These nanozymes efficiently converted pro-ciprofloxacin to ciprofloxacin inside the macrophages, selectively killing pathogenic Salmonella enterica subsp. enterica serovar Typhimurium relative to non-pathogenic Lactobacillus sp. in a transwell co-culture model. Overall, this targeted bioorthogonal nanozyme strategy presents an effective treatment for intracellular infections, including typhoid and tuberculosis.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/uso terapêutico , Salmonella typhimurium
3.
J Am Chem Soc ; 142(24): 10723-10729, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32464057

RESUMO

Bioorthogonal catalysis offers a unique strategy to modulate biological processes through the in situ generation of therapeutic agents. However, the direct application of bioorthogonal transition metal catalysts (TMCs) in complex media poses numerous challenges due to issues of limited biocompatibility, poor water solubility, and catalyst deactivation in biological environments. We report here the creation of catalytic "polyzymes", comprised of self-assembled polymer nanoparticles engineered to encapsulate lipophilic TMCs. The incorporation of catalysts into these nanoparticle scaffolds creates water-soluble constructs that provide a protective environment for the catalyst. The potential therapeutic utility of these nanozymes was demonstrated through antimicrobial studies in which a cationic nanozyme was able to penetrate into biofilms and eradicate embedded bacteria through the bioorthogonal activation of a pro-antibiotic.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Polímeros/farmacologia , Elementos de Transição/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Catálise , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Elementos de Transição/química
4.
Molecules ; 22(12)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29258253

RESUMO

Eucommia ulmoides is a model representative of the dioecious plants with sex differentiation at initiation. Nevertheless, the genetic mechanisms of sexual dimorphism and sex determination in E. ulmoides remain poorly understood. In this study de novo transcriptome sequencing on Illumina platform generated >45 billion high-quality bases from fresh leaves of six male and female individuals of E. ulmoides. A total of 148,595 unigenes with an average length of 801 base-pairs (bp) were assembled. Through comparative transcriptome analyses, 116 differentially expressed genes (DEGs) between the males and the females were detected, including 73 male-biased genes and 43 female-biased genes. Of these DEGs, three female-biased genes were annotated to be related with the sexually dimorphic gutta content in E. ulmoides. One male-biased DEG was identified as putative MADS box gene APETALA3, a B class floral organ identity gene in the flowering plants. SNPs calling analyses further confirmed that the APETALA3-like gene was probably involved in the sex determination in E. ulmoides. Four other male-biased DEGs were potential sex-associated genes as well with segregated SNPs in accord with sex type. In addition, the SNPs density was 1.02 per kilobase (kb) in the expressed genes of E. ulmoides, implying a relatively high genetic diversity.


Assuntos
Eucommiaceae/genética , Perfilação da Expressão Gênica/métodos , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Pólen/genética , Eucommiaceae/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
5.
PLoS One ; 9(2): e90298, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587316

RESUMO

Eosinophils play a central role in asthma. The present study was performed to investigate the effect of tumour necrosis factor-α (TNF-α) on longevity of isolated human eosinophils. In contrast to Fas, TNF-α inhibited eosinophil apoptosis as evidenced by a combination of flow cytometry, DNA fragmentation assay and morphological analyses. The effect of TNF-α on eosinophil apoptosis was reversed by a TNF-α neutralising antibody. The anti-apoptotic effect of TNF-α was not due to autocrine release of known survival-prolonging cytokines interleukins 3 and 5 or granulocyte-macrophage-colony-stimulating factor as their neutralisation did not affect the effect of TNF-α. The anti-apoptotic signal was mediated mainly by the TNF-receptor 1. TNF-α induced phosphorylation and degradation of IκB and an increase in NF-κB DNA-binding activity. The survival-prolonging effect of TNF-α was reversed by inhibitors of NF-κB pyrrolidinedithiocarbamate and gliotoxin and by an inhibitor of IκB kinase, BMS-345541. TNF-α induced also an increase in AP-1 DNA-binding activity and the antiapoptotic effect of TNF-α was potentiated by inhibitors of AP-1, SR 11302 and tanshinone IIA and by an inhibitor of c-jun-N-terminal kinase, SP600125, which is an upstream kinase activating AP-1. Our results thus suggest that TNF-α delays human eosinophil apoptosis via TNF-receptor 1 and the resulting changes in longevity depend on yin-yang balance between activation of NF-κB and AP-1.


Assuntos
Asma/genética , Eosinófilos/metabolismo , NF-kappa B/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Transcrição AP-1/genética , Fator de Necrose Tumoral alfa/farmacologia , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Asma/metabolismo , Asma/patologia , Sobrevivência Celular/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Regulação da Expressão Gênica , Gliotoxina/farmacologia , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Imidazóis/farmacologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação , Cultura Primária de Células , Ligação Proteica , Pirrolidinas/farmacologia , Quinoxalinas/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Retinoides/farmacologia , Transdução de Sinais , Tiocarbamatos/farmacologia , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Receptor fas/farmacologia
6.
Exp Mol Med ; 44(11): 633-41, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22902510

RESUMO

Triptolide, a compound extracted from the traditional Chinese medicine preparation of Tripterygium wilfordii Hook F., has been reported to have anti-inflammatory and anti-cancer activities. However, its effect on ovarian cancer invasion is unknown. We observed that MMP7 and MMP19 expression increased in ovarian cancer tissue. Triptolide treatment inhibited the migration and invasion of ovarian cancer cells SKOV3 and A2780 at the concentration of 15 nM. We also observed that triptolide suppressed MMP7 and MMP19 promoter activity in a dose-dependent manner, down-regulating the expressions of these promoters on mRNA and protein level. Moreover, triptolide enhanced E-cadherin expression in ovarian cancer cells. In vivo, triptolide inhibited tumor formation and metastasis in nude mice, and suppressed MMP7 and MMP19 expression; it also enhanced E-cadherin expression in tumor in a dose-dependent manner. Over expression of MMP7 and MMP19, or suppression of E-cadherin expression partially abolished the inhibitory effect of triptolide on invasion of ovarian cancer cells. To summarize, triptolide significantly inhibited the migration and invasion of ovarian cancer cells by suppression of MMP7 and MMP19 and up-regulation of E-cadherin expression. This study shows that triptolide is a good candidate for the treatment of ovarian cancer and reduction of metastasis.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Caderinas/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Diterpenos/farmacologia , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinases da Matriz Secretadas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Fenantrenos/farmacologia , Animais , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cistadenocarcinoma Seroso/patologia , Compostos de Epóxi/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 7 da Matriz/genética , Metaloproteinases da Matriz Secretadas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Paclitaxel/farmacologia , Regiões Promotoras Genéticas , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA