Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 3): 116312, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270082

RESUMO

Microplastics are emerging pollutants and have become a global environmental issue. The impacts of microplastics on the phytoremediation of heavy metal-contaminated soils are unclear. A pot experiment was conducted to investigate the effects of four additions (0, 0.1%, 0.5%, and 1% w·w-1) of polyethylene (PE) and cadmium (Cd), lead (Pb), and zinc (Zn) contaminated soil on the growth and heavy metal accumulation of two hyperaccumulators (Solanum photeinocarpum and Lantana camara). PE significantly decreased the pH and activities of dehydrogenase and phosphatase in soil, while it increased the bioavailability of Cd and Pb in soil. Peroxidase (POD), catalase (CAT), and malondialdehyde (MDA) activity in the plant leaves were all considerably increased by PE. PE had no discernible impact on plant height, but it did significantly impede root growth. PE affected the morphological contents of heavy metals in soils and plants, while it did not alter their proportions. PE increased the content of heavy metals in the shoots and roots of the two plants by 8.01-38.32% and 12.24-46.28%, respectively. However, PE significantly reduced the Cd extraction amount in plant shoots, while it significantly increased the Zn extraction amount in the plant roots of S. photeinocarpum. For L. camara, a lower addition (0.1%) of PE inhibited the extraction amount of Pb and Zn in the plant shoots, but a higher addition (0.5% and 1%) of PE stimulated the Pb extraction amount in the plant roots and the Zn extraction amount in the plant shoots. Our results indicated that PE microplastics have negative effects on the soil environment, plant growth, and the phytoremediation efficiency of Cd and Pb. These findings contribute to a better knowledge of the interaction effects of microplastics and heavy metal-contaminated soils.


Assuntos
Lantana , Metais Pesados , Poluentes do Solo , Solanum , Cádmio/análise , Zinco/análise , Biodegradação Ambiental , Chumbo/toxicidade , Chumbo/análise , Microplásticos/análise , Plásticos/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Plantas , Solo/química , Poluentes do Solo/análise , Raízes de Plantas/química
2.
Huan Jing Ke Xue ; 44(3): 1714-1726, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922232

RESUMO

Regulation of exogenous substances and intercropping are effective methods to improve the efficiency of phytoremediation of heavy metal contaminated soil. A pot experiment was used to study the effects of earthworms, straw, and citric acid on the remediation of Zn, Pb, and Cd contaminated soil by monocropping and intercropping of Solanum photeinocarpum and Pterocypsela indica. The results showed that the bioaccumulation factors (BCF) of earthworms for Zn, Pb, and Cd were 0.07-0.13, 0.10-0.26, and 5.64-15.52, respectively. The addition of straw in the soil increased the biomass of earthworms by 22.29%-223.87% but reduced the heavy metal concentrations by 8.15%-62.58%. Straw and citric acid showed passivation and activation effects, respectively, but earthworms had no significant effect on the available concentrations of heavy metals in the soil. Earthworms had no significant effect on the heavy metal concentrations of P. indica but reduced the heavy metal concentrations of S. photeinocarpum. Straw showed an inhibitory effect on the concentrations of heavy metals in P. indica but promoted the concentrations of Cd in S. photeinocarpum. Citric acid had no significant effect on the heavy metal concentrations in S. photeinocarpum but significantly increased the Pb concentrations in P. indica. Intercropping significantly reduced the soil available heavy metal concentrations and increased the heavy metal concentrations in plant roots; however, it had no significant effect on heavy metal concentrations in plant shoots. The total extraction amounts of Zn, Pb, and Cd by plants were mainly manifested as P. indica>intercropping>S. photeinocarpum. The addition of earthworms increased the total extraction amounts of Zn, Pb, and Cd by 12.49%, 35.89%, and 29.01%, respectively, and the addition of straw+earthworms increased the total extraction amounts of Pb by 87.21%. The results indicated that straw significantly promoted the growth of earthworms and reduced their accumulation of heavy metals, and the addition of earthworms alone or in combination with straw can effectively improve the remediation potential of P. indica of Zn, Pb, and Cd contaminated soil.


Assuntos
Asteraceae , Metais Pesados , Oligoquetos , Poluentes do Solo , Solanum , Animais , Cádmio/análise , Chumbo , Solo , Ácido Cítrico , Poluentes do Solo/análise , Metais Pesados/análise , Biodegradação Ambiental , Zinco
3.
J Hazard Mater ; 189(1-2): 414-9, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21397392

RESUMO

A new method, soil seed bank-metal concentration gradient method was used to screen for heavy metal hyperaccumulators, and Solanum photeinocarpum was found to be a potential Cd-hyperaccumulator. The chlorophyll content and photosynthetic rate of S. photeinocarpum were not affected by Cd pollution, while leaf stomas and transpiration rate were significantly decreased by more than 60 mg kg(-1) Cd, and leaf water use efficiency and shoot water content were significantly increased by more than 60 or 100 mg kg(-1) Cd, respectively. In the seed bank-Cd concentration gradient experiment, the shoot biomass of S. photeinocarpum showed no significant reduction with soil Cd treatment as high as 100 mg kg(-1), but the root biomass was significantly reduced by more than 60 mg kg(-1) Cd contamination. Plant tissues accumulated 544, 132 and 158 mg kg(-1) Cd in roots, stems and leaves, respectively, and extracted 157 and 195 µg Cd plant(-1) in roots and shoots at 100 mg kg(-1) Cd in soil, respectively. In the transplanting-Cd concentration gradient experiment, plant shoot biomass and root biomass were unaffected by soil Cd as high as 60 mg kg(-1). Plant tissues accumulated 473, 215 and 251 mg kg(-1) Cd in roots, stems and leaves, respectively, and extracted 176 and 787 µg Cd plant(-1) in roots and shoots at 60 mg kg(-1) soil Cd, respectively. Soil seed bank-metal concentration gradient method could be an effective method for the screening of hyperaccumulators.


Assuntos
Biodegradação Ambiental , Cádmio/farmacocinética , Poluentes do Solo/farmacocinética , Solanum/metabolismo , Biomassa , Clorofila , Cinética , Métodos , Fotossíntese , Estruturas Vegetais , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA