Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neurorehabil Neural Repair ; 38(5): 350-363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491852

RESUMO

BACKGROUND: Yi-Qi-Tong-Luo Granules (YQTLs) is a natural compound of Traditional Chinese Medicine authorized by China Food and Drug Administration (CFDA). These granules are employed in the convalescent stage of cerebral infarction and render notable clinical efficacy. This study aims to uncover the underlying mechanisms of YQTLs on remyelination after cerebral ischemia injury. MATERIALS AND METHODS: We established cerebral ischemia model in rats using microsphere-induced multiple cerebral infarction (MCI). We evaluated the pharmacological effects of YQTLs on MCI rats, through Morri's water maze test, open field test, hematoxylin and eosin staining, and glycine silver immersion. We employed liquid chromatography mass spectrometry metabolomics to identify differential metabolites. Enzyme-linked immunosorbent assay was utilized to measure the release of neurotrophins, while immunofluorescence staining was used to assess oligodendrocyte precursor cells differences and myelin regeneration. We used Western blotting to validate the protein expression of remyelination-associated signaling pathways. RESULTS: YQTLs significantly improves cognitive function following cerebral ischemia injury. Pathological tissue staining revealed that YQTLs administration inhibits neuronal denaturation and neurofibrillary tangles. We identified 141 differential metabolites among the sham, MCI, and YQTLs-treated MCI groups. Among these metabolites, neurotransmitters were identified, and notably, gamma-aminobutyric acid (GABA) showed marked improvement in the YQTLs group. The induction of neurotrophins, such as brain-derived neurotrophic factor (BDNF) and PDGFAA, upregulation of olig2 and MBP expression, and promotion of remyelination were evident in YQTLs-treated MCI groups. Gamma-aminobutyric acid B receptors (GABABR), pERK/extracellular regulated MAP kinase, pAKT/protein kinase B, and pCREB/cAMP response element-binding were upregulated following YQTLs treatment. CONCLUSION: YQTLs enhance the binding of GABA to GABABR, thereby activating the pCREB/BDNF signaling pathway, which in turn increases the expression of downstream myelin-associated proteins and promotes remyelination and cognitive function.


Assuntos
Isquemia Encefálica , Fator Neurotrófico Derivado do Encéfalo , Metabolômica , Ratos Sprague-Dawley , Remielinização , Transdução de Sinais , Animais , Remielinização/efeitos dos fármacos , Remielinização/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Ratos , Masculino , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos
2.
Chin J Integr Med ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319525

RESUMO

OBJECTIVE: To observe the protective effect and mechanism of hydroxyl safflower yellow A (HSYA) from myocardial ischemia-reperfusion injury on human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were treated with oxygen-glucose deprivation reperfusion (OGD/R) to simulate the ischemia reperfusion model, and cell counting kit-8 was used to detect the protective effect of different concentrations (1.25-160 µ mol/L) of HSYA on HUVECs after OGD/R. HSYA 80 µ mol/L was used for follow-up experiments. The contents of inflammatory cytokines interleukin (IL)-18, IL-1 ß, monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor α (TNF-α) and IL-6 before and after administration were measured by enzyme-linked immunosorbent assay. The protein expressions of toll-like receptor, NOD-like receptor containing pyrin domain 3 (NLRP3), gasdermin D (GSDMD) and GSDMD-N-terminal domain (GSDMD-N) before and after administration were detected by Western blot. NLRP3 inflammasome inhibitor cytokine release inhibitory drug 3 sodium salt (CRID3 sodium salt, also known as MCC950) and agonist were added, and the changes of NLRP3, cysteine-aspartic acid protease 1 (Caspase-1), GSDMD and GSDMD-N protein expressions were detected by Western blot. RESULTS: HSYA inhibited OGD/R-induced inflammation and significantly decreased the contents of inflammatory cytokines IL-18, IL-1 ß, MCP-1, TNF-α and IL-6 (P<0.01 or P<0.05). At the same time, by inhibiting NLRP3/Caspase-1/GSDMD pathway, HSYA can reduce the occurrence of pyroptosis after OGD/R and reduce the expression of NLRP3, Caspase-1, GSDMD and GSDMD-N proteins (P<0.01). CONCLUSIONS: The protective effect of HSYA on HUVECs after OGD/R is related to down-regulating the expression of NLRP3 inflammasome and inhibiting pyroptosis.

3.
J Ethnopharmacol ; 323: 117690, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38195019

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shuangshen Ningxin Formula (SSNX) is a traditional Chinese medicine formula used to treat myocardial ischemia-reperfusion injury (MIRI). A randomized controlled trial previously showed that SSNX reduced cardiovascular events, and experiments have also verified that SSNX attenuated ischemia-reperfusion (I/R) injury. However, the mechanism of SSNX in the treatment of microvascular I/R injury is still unclear. AIM OF THE STUDY: To determine whether SSNX protects the microvasculature by regulating I/R induction in rats and whether this effect depends on the regulation of NR4A1/Mff/Drp1 pathway. METHODS: The anterior descending coronary artery was ligated to establish a rat MIRI model with 45 min of ischemia and 24 h of reperfusion. The rats were subjected to a 7-day pretreatment with SSNX and nicorandil, after which their cardiac function and microvascular functional morphology were evaluated through diverse methods, including hematoxylin and eosin (HE) staining, wheat germ agglutinin (WGA) staining, and transmission electron microscopy. Cell apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Additionally, serum levels of ET-1 and eNOS were determined through an enzyme-linked immunosorbent assay (ELISA). The expression levels of NR4A1, Mff, and proteins related to mitochondrial fission were examined by Western blot (WB). Cardiac microcirculation endothelial cells (CMECs) were cultured and the oxygen-glucose deprivation/reoxygenation (OGD/R) model was duplicated. Following treatment with SSNX and DIM-C-pPhOH, an NR4A1 inhibitor, cell viability was assessed. Fluorescence was used to evaluate mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPTP) opening. Moreover, vascular endothelial function was evaluated through transendothelial electrical resistance (TEER), Transwell assays and tube formation assays. RESULTS: The results showed that SSNX reduced the infarction area and no-flow area, improved cardiac function, mitigated pathological alterations, increased endothelial nitric oxide synthase expression, protected endothelial function, and attenuated microvascular damage after I/R injury. I/R triggered mitochondrial fission and apoptotic signaling in CMECs, while SSNX restored mitochondrial fission to normal levels and inhibited mitochondrial apoptosis. A study using CMECs revealed that SSNX protected endothelial function after OGD/R, attenuating the increase in NR4A1/Mff/Drp1 protein and inactivating VDAC1, HK2, cytochrome c (cyt-c) and caspase-9. Research also shows that SSNX can affect CMEC cell migration and angiogenesis, reduce mitochondrial membrane potential damage, and inhibit membrane opening. Moreover, DIM-C-pPhOH, an NR4A1 inhibitor, partially imitated the effect of SSNX. CONCLUSION: SSNX has a protective effect on the cardiac microvasculature by inhibiting the NR4A1/Mff/Drp1 pathway both in vivo and in vitro.


Assuntos
Medicamentos de Ervas Chinesas , Indóis , Traumatismo por Reperfusão Miocárdica , Fenóis , Traumatismo por Reperfusão , Ratos , Animais , Células Endoteliais , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Apoptose , Traumatismo por Reperfusão/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5863-5870, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114182

RESUMO

This study aims to investigate the effects of baicalein(BAI) on lipopolysaccharide(LPS)-induced human microglial clone 3(HMC3) cells, with a focus on suppressing inflammatory responses and elucidating the potential mechanism underlying the therapeutic effects of BAI on ischemic stroke via modulating the cAMP-PKA-NF-κB/CREB pathway. The findings have significant implications for the application of traditional Chinese medicine in treating cerebral ischemic diseases. First, the safe dosage of BAI was screened, and then an inflammation model was established with HMC3 cells by induction with LPS for 24 h. The cells were assigned into a control group, a model group, and high-, medium-, and low-dose(5, 2.5, and 1.25 µmol·L~(-1), respectively) BAI groups. The levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in cell extracts, as well as the levels of interleukin-1ß(IL-1ß), IL-6, tumor necrosis factor-α(TNF-α), and cyclic adenosine monophosphate(cAMP) in the cell supernatant, were measured. Western blot was performed to determine the expression of protein kinase A(PKA), phosphorylated cAMP-response element binding protein(p-CREB), and nuclear factor-kappa B p65(NF-κB p65). Hoechst 33342/PI staining was employed to assess cell apoptosis. High and low doses of BAI were used for treatment in the research on the mechanism. The results revealed that BAI at the concentrations of 10 µmol·L~(-1) and below had no impact on normally cultured HMC3 cells. LPS induction at 200 ng·mL~(-1) for 24 h reduced the SOD activity and increased the MDA content in HMC3 cells. However, 5, 2.5, and 1.25 µmol·L~(-1) BAI significantly increased the SOD activity and 5 µmol·L~(-1) BAI significantly decreased the MDA content. In addition, BAI ameliorated the M1 polarization of HMC3 cells induced by LPS, as indicated by cellular morphology. The results of ELISA demonstrated that BAI significantly lowered the levels of TNF-α, IL-1ß, IL-6, and cAMP in the cell supernatant. Western blot revealed that BAI up-regulated the protein levels of PKA and p-CREB while down-regulating the expression of NF-κB p65. Hoechst 33342/PI staining results indicated that BAI mitigated the apoptosis of HMC3 cells. Overall, the results indicated that BAI had protective effects on the HMC3 cells induced by LPS, and could inhi-bit inflammatory response and improve cell apoptosis, which might be related to the regulation of the cAMP-PKA-NF-κB/CREB pathway.


Assuntos
Microglia , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Superóxido Dismutase/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4156-4163, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802784

RESUMO

This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Aspirina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais
6.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5284-5291, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36472035

RESUMO

This study aims to observe the therapeutic effect of salidroside on cerebral ischemia-reperfusion(I/R) model rats, and to specifically explore the protection of salidroside on endothelial cell barrier after I/R and the mechanism. In the experiment, SD rats were randomized into sham group, model group, and high-, medium-, and low-dose(10, 5, and 2.5 mg·kg~(-1)) salidroside groups. The suture method was used to induce I/R in rats. The infarct area, neurobehavioral evaluation, and brain water content were used to evaluate the efficacy of salidroside. As for the experiment on the mechanism, high-dose and low-dose salidroside groups were designed. The pathological morphology was observed based on hematoxylin and eosin(HE) staining, and ultrastructure of vascular endothelial cells based on transmission electron microscopy. The content of nitric oxide(NO) in serum, four indexes of blood coagulation, and the content of von Willebrand factor(vWF) in plasma were measured. Western blot(WB) and immunofluorescence(IF) were employed to determine the expression of tight junction proteins(ZO-1, occluding, and claudin-1) and matrix metalloproteinase 9(MMP-9) in the cortex. The results showed that the model group had obvious neurological deficit, obvious infarct in the right brain tissue, and significant increase in water content in brain tissue compared with the sham group. Compared with the model group, high-dose and low-dose salidroside groups showed decrease in neurobehavioral score, and the high-, medium-, and low-dose salidroside groups demonstrated obviously small infarct area and significant decrease in water content in brain tissue. The results of HE staining and transmission electron microscopy showed that rats had necrosis of neurons, damage of original physiological structure of endothelial cells, and disintegration of the tight junction between endothelial cells after I/R compared with the sham group. Compared with the model group, the high-dose and low-dose salidroside groups showed alleviation of neuron injury and intact physiological structure of endothelial cells. The model group had significantly lower serum level of NO, significantly higher plasma levels of vWF and fibrinogen(FIB), and significantly shorter thrombin time(TT) and prothrombin time(PT) than the sham group. Compared with model group, the high-dose and low-dose salidroside groups increased the serum content of NO in serum, decreased the plasma levels of FIB and vWF, and significantly prolonged TT and PT. WB and IF results showed that the model group had significantly lower levels of ZO-1, occluding, and claudin-1 among endothelial cells and significantly higher level of MMP-9 than the sham group. Compared with the model group, high-dose and low-dose salidroside significantly increased the levels of ZO-1, occluding, and claudin-1 in the cortex. The above experimental results show that salidroside has clear therapeutic effect on I/R rats and protects the brain. To be specific, it alleviates the damage of endothelial cells by increasing NO synthesis in endothelial cells, inhibiting coagulation reaction and MMP-9 expression, up-regulating the expression of ZO-1, occludin, and claudin-1, thereby protecting the brain.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Ratos , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Barreira Hematoencefálica , Claudina-1/metabolismo , Claudina-1/farmacologia , Claudina-1/uso terapêutico , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia , Fator de von Willebrand/uso terapêutico , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Reperfusão , Água/metabolismo
7.
Phytomedicine ; 105: 154373, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35947899

RESUMO

BACKGROUND: Microglia can be activated as proinflammatory (M1) phenotypes and anti-inflammatory (M2) phenotypes after stroke. Parthenolide (PTL) has anti-inflammatory and protective effects on neurological diseases, but until now, the exact mechanisms of these processes after stroke have been unclear. The purpose of this study was to determine the effect of PTL on microglial polarization after stroke and its target for inducing microglial polarization. METHODS: Triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and neurological evaluation were performed in a focal transient cerebral ischemia rat model. The human microglia exposed to lipopolysaccharide (LPS) was used for in vitro experiments. Microglial polarization was assessed by RT-PCR and immunostaining. Inflammatory cytokine assays and western blotting were used to investigate the molecular mechanisms underlying PTL-mediated microglial polarization in vivo and in vitro. RESULTS: PTL significantly reduced cerebral infarction and neuronal apoptosis in rats with cerebral ischemia, reduced the level of inflammatory factors and alleviated neurological deficits. PTL treatment decreased the expression of microglia/macrophage markers in M1 macrophages and increased the expression of microglia/macrophage markers in M2 macrophages after stroke, which induced the transformation of microglia cells from the M1 phenotype to the M2 phenotype. Furthermore, PTL significantly reduced RhoA/ROCK-NF-κB pathway activity and downregulated the effects of pentanoic acid (ROCK agonist). CONCLUSIONS: PTL has been shown to mediate neuroinflammation and protect against ischemic brain injury by regulating microglial polarization via the RhoA/ROCK pathway.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Anti-Inflamatórios , Infarto Cerebral , Humanos , Microglia , Ratos , Sesquiterpenos , Proteína rhoA de Ligação ao GTP
8.
Front Pharmacol ; 13: 946752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873557

RESUMO

Ischemic stroke has been considered one of the leading causes of mortality and disability worldwide, associated with a series of complex pathophysiological processes. However, effective therapeutic methods for ischemic stroke are still limited. Panax ginseng, a valuable traditional Chinese medicine, has been long used in eastern countries for various diseases. Ginsenosides, the main active ingredient of Panax ginseng, has demonstrated neuroprotective effects on ischemic stroke injury during the last decade. In this article, we summarized the pathophysiology of ischemic stroke and reviewed the literature on ginsenosides studies in preclinical and clinical ischemic stroke. Available findings showed that both major ginsenosides and minor ginsenosides (such as Rg3, Rg5, and Rh2) has a potential neuroprotective effect, mainly through attenuating the excitotoxicity, Ca2+ overload, mitochondria dysfunction, blood-brain barrier (BBB) permeability, anti-inflammation, anti-oxidative, anti-apoptosis, anti-pyroptosis, anti-autophagy, improving angiogenesis, and neurogenesis. Therefore, this review brings a current understanding of the mechanisms of ginsenosides in the treatment of ischemic stroke. Further studies, especially in clinical trials, will be important to confirm the clinical value of ginseng and ginsenosides.

9.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1031-1038, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35285204

RESUMO

This study aims to explore the pharmacodynamic effect of baicalin on rat brain edema induced by cerebral ischemia reperfusion injury and discuss the mechanism from the perspective of inhibiting astrocyte swelling, which is expected to serve as a refe-rence for the treatment of cerebral ischemia with Chinese medicine. To be specific, middle cerebral artery occlusion(suture method) was used to induce cerebral ischemia in rats. Rats were randomized into normal group, model group, high-dose baicalin(20 mg·kg~(-1)) group, and low-dose baicalin(10 mg·kg~(-1)) group. The neurobehavior, brain index, brain water content, and cerebral infarction area of rats were measured 6 h and 24 h after cerebral ischemia. Brain slices were stained with hematoxylin and eosin(HE) for the observation of pathological morphology of cerebral cortex after baicalin treatment. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of total L-glutathione(GSH) and glutamic acid(Glu) in brain tissue, Western blot to measure the content of glial fibrillary acidic protein(GFAP), aquaporin-4(AQP4), and transient receptor potential vanilloid type 4(TRPV4), and immunohistochemical staining to observe the expression of GFAP. The low-dose baicalin was used for exploring the mechanism. The experimental results showed that the neurobehavioral scores(6 h and 24 h of cerebral ischemia), brain water content, and cerebral infarction area of the model group were increased, and both high-dose and low-dose baicalin can lower the above three indexes. The content of GSH dropped but the content of Glu raised in brain tissue of rats in the model group. Low-dose baicalin can elevate the content of GSH and lower the content of Glu. According to the immunohistochemical staining result, the model group demonstrated the increase in GFAP expression, and swelling and proliferation of astrocytes, and the low-dose baicalin can significantly improve this situation. The results of Western blot showed that the expression of GFAP, TRPV4, and AQP4 in the cerebral cortex of the model group increased, and the low-dose baicalin reduce their expression. The cerebral cortex of rats in the model group was severely damaged, and the low-dose baicalin can significantly alleviate the damage. The above results indicate that baicalin can effectively relieve the brain edema caused by cerebral ischemia reperfusion injury in rats, possibly by suppressing astrocyte swelling and TRPV4 and AQP4.


Assuntos
Edema Encefálico , Isquemia Encefálica , Animais , Aquaporina 4/genética , Astrócitos , Edema Encefálico/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Flavonoides , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Reperfusão , Canais de Cátion TRPV/uso terapêutico
10.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1327-1335, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35343161

RESUMO

Protective effect of Qilong Capsules(QL) on the myocardial fibrosis and blood circulation of rats with coronary heart disease of Qi deficiency and blood stasis type was investigated. Sleep deprivation and coronary artery ligation were used to construct a disease-symptom combination model, and 60 SD rats were divided into sham operation(sham) group, syndrome(S) group, disease and syndrome(M) group and QL group randomly. The treatment group received administration of QL 0.4 g·kg~(-1)·d~(-1). Other groups were given the same amount of normal saline. The disease indexes of each group [left ventricular end diastolic diameter(LVESD), left ventricular end systolic diameter(LVEDD), left ventricular ejection fraction(LVEF), left ventricular axis shortening rate(LVFS), myocardial histopathology, platelet morphology, peripheral blood flow] and syndrome indexes(tongue color, pulse, grip power) were detected. In sham group, cardiomyocytes and myocardial fibers were arranged neatly and densely with clear structures. The tongues' color in sham were light red, and the pulse shape were regular. RGB is a parameter reflected the brightness of the image of the tongue. In the S group, the amplitude and frequency of the animal's pulse increased accompanied by decreasing R,G,B, however, the decreased R,G,B was accompanied by reduced pulse amplitude in M group. And in M group, we observed fuzzy cell morphology, hypertrophied myocytes, disordered arrangement of cardiomyocytes and myocardial fibers, reduced peripheral blood flow and increased collagen volume fraction(CVF). Increased LVESD and LVEDD, and decreased LVEF and LVFS represented cardiac function in S group was significantly lower than that in sham. In QL group, the tongue's color was red and the pulse was smooth. The myocardial fibers of the QL group were arranged neatly and secreted less collagen. It improved the blood circulation in the sole and tail, and reversed the increasing of LVEDD, LVESD and the decreasing of LVEF and LVFS of M group. Platelets in M and S group showed high reactivity, and QL could decrease aggregation risk. In conclusion, Qilong Capsules has an obvious myocardial protective effect on ischemic cardiomyopathy, which may inhibit the degree of myocardial fibrosis and reduce platelet reactivity.


Assuntos
Cardiomiopatias , Qi , Animais , Cápsulas , Cardiomiopatias/tratamento farmacológico , Fibrose , Miócitos Cardíacos , Ratos , Ratos Sprague-Dawley , Volume Sistólico , Função Ventricular Esquerda
11.
Chin J Integr Med ; 28(2): 99-105, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935097

RESUMO

The abnormality of platelet function plays an important role in the pathogenesis and evolution of blood stasis syndrome (BSS). The explanation of its mechanism is a key scientific issue in the study of cardiovascular and cerebrovascular diseases and treatment. System biology technology provides a good technical platform for further development of platelet multi-omics, which is conducive to the scientific interpretation of the biological mechanism of BSS. The article summarized the pathogenesis of platelets in BSS, the mechanism of action of blood activating and stasis resolving drugs, and the application of genomics, proteomics, and metabonomics in platelet research, and put forward the concept of "plateletomics in BSS". Through the combination and cross-validation of multi-omics technology, it mainly focuses on the clinical and basic research of cardiovascular and cerebrovascular diseases; through the interactive verification of multi-omics technology and system biology, it mainly focuses on the platelet function and secretion system. The article systematically explains the molecular biological mechanism of platelet activation, aggregation, release, and other stages in the formation and development of BSS, and provides a new research idea and method for clarifying the pathogenesis of BSS and the mechanism of action of blood activating and stasis resolving drugs.


Assuntos
Plaquetas , Ativação Plaquetária , Hemostasia , Proteômica , Tecnologia
12.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5201-5209, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738420

RESUMO

The traditional Chinese medicine(TCM) syndrome of blood stasis refers to blood stagnation in meridians and viscera, with the main symptoms of pain, mass, bleeding, purple tongue, and unsmooth pulse. Cardiovascular and cerebrovascular diseases are among the major chronic diseases seriously harming the health of the Chinese. Among the coronary heart disease and stroke patients, most demonstrate the blood stasis syndrome. Platelet is considered to be one of the necessary factors in thrombosis, which closely relates to the TCM syndrome of blood stasis and the occurrence of cardiovascular and cerebrovascular diseases. The clinical and laboratory research on platelet activation and aggregation has been paid more and more attention. Its purpose is to treat and prevent blood stasis syndrome. In this study, the authors analyzed the research on the dysfunctions of platelets in blood stasis syndrome, biological basis of TCM blood stasis syndrome, and the effect of blood-activating stasis-resolving prescriptions on platelets, aiming at providing a reference for exploring the mechanism of platelet intervention in the treatment of TCM blood stasis syndrome and the pathways and targets of Chinese medicine in the prevention and treatment of the syndrome.


Assuntos
Doença das Coronárias , Medicina Tradicional Chinesa , Plaquetas , Humanos , Ativação Plaquetária , Síndrome
13.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5226-5232, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738423

RESUMO

Buyang Huanwu Decoction, a representative prescription in traditional Chinese medicine(TCM) for tonifying Qi and activating blood, has been proved to be effective in preventing and treating acute cerebral infarction(ACI). It consists of Astragali Radix, Angelicae Sinensis Radix, Paeoniae Radix Rubra, Pheretima, Chuanxiong Rhizoma, Carthami Flos, and Persicae Semen, possessing multiple active ingredients. The neurovascular unit is a functionally and structurally interdependent multicellular complex composed of neurons-glial cells-blood vessels. It plays an important role in the pathological changes of cerebral ischemia and the permeability variation of the blood-brain barrier. In recent years, Buyang Huanwu Decoction has been found to protect the integrity of neurovascular units and improve the permeability of the blood-brain barrier, thereby alleviating stroke and other diseases caused by cerebral ischemia. This paper collated and summarized the protective effects of Buyang Huanwu Decoction on neurovascular units.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral , Humanos , Medicina Tradicional Chinesa
14.
Front Pharmacol ; 12: 748568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795584

RESUMO

Stroke is one of the most devastating diseases worldwide. The Chinese herbal preparation SaiLuoTong (SLT) capsule showed outstanding therapeutic effects on stroke and its sequelae. The aim of this study was to further elucidate its therapeutic mechanism. We duplicated a permanent cerebral ischemia model in rats by MCAO and used SLT (33 and 16.5 mg/kg) to intervene. The results showed SLT dose dependently decreased infarction volumes, relieved neuron degeneration and loss, and ameliorated neurological functions, and the dose of 33 mg/kg had statistical significance (compared with the model group, p < 0.05); SLT of 33 mg/kg also significantly inhibited the elevation in brain water content and the loss in claudin-1 and occludin expressions; additionally, it significantly increased nucleus translocation of Nrf2, elevated the expression of HO-1, and raised the activity of SOD and content of GSH (compared with the model group, p < 0.05 or 0.01). These results testified SLT's anti-brain ischemia effect and hint this effect may be related to the protection of brain microvascular endothelial cells (BMECs) that is dependent on the Nrf2 pathway. To further testify, we cultured hCMEC/D3 cells, duplicated OGD/R model to simulate ischemia, and used SLT (3.125, 6.25, and 12.5 mg/L) to treat. SLT dose dependently and significantly inhibited the drop in cell viabilities, and activated the Nrf2 pathway by facilitating Nrf2 nucleus translocation, and increasing HO-1 expression, SOD activity, and GSH content (compared with the model group, p < 0.05 or 0.01); last, the anti-OGD/R effects of SLT, including raising cell viabilities, inhibiting the elevation in dextran permeability, and preserving expressions of claudin-1 and occludin, were all abolished by Nrf2 siRNA interference. The in vitro experiment undoubtedly confirmed the direct protective effect of SLT on BMECs and the obligatory role of the Nrf2 pathway in it. Collectively, data of this study suggest that SLT's therapeutic effect on brain ischemia is related to its Nrf2-dependent BMECs protection.

15.
Front Pharmacol ; 12: 662003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093193

RESUMO

Post-stroke depression (PSD) is one of the most common stroke complications, which seriously affects stroke's therapeutic effect and brings great pain for patients. The pathological mechanism of PSD has not been revealed. Jiedu Tongluo granules (JDTLG) is an effective traditional Chinese medicine for PSD treatment which is widely used in clinical treatment. JDTLG has a significant therapeutic effect against PSD, but the mechanism is still unclear. The PSD rat model was established by carotid artery embolization combined with chronic sleep deprivation followed by treating with JDTLG. Neurobehavioral and neurofunctional experiments were engaged in studying the neural function of rats. Histomorphology, proteomics, and western blotting researches were performed to investigate the potential molecular mechanisms related to JDTLG therapy. Oral treatment of JDTLG could significantly improve the symptoms of neurological deficit and depression symptoms of PSD rats. Proteomic analysis identified several processes that may involve the regulation of JDTLG on the PSD animal model, including energy metabolism, nervous system, and N-methyl-D-aspartate receptor (NMDAR)/brain-derived neurotrophic factor (BDNF) signal pathway. Our results showed that JDTLG could reduce glutamate (Glu) level and increase gamma-aminobutyric acid (GABA) level via regulating the NMDAR/BDNF pathway, which may play a vital role in the occurrence and development of PSD.

16.
Oxid Med Cell Longev ; 2019: 8416105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565154

RESUMO

BACKGROUND: Astrogliosis can result in astrocytes with hypertrophic morphology after injury, indicated by extended processes and swollen cell bodies. Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily, has been reported to play a detrimental role in ischaemic brains and neurodegenerative diseases. Sailuotong (SLT) capsule is a standardized three-herb preparation composed of ginseng, ginkgo, and saffron for the treatment of vascular dementia. Although recent clinical trials have demonstrated the beneficial effect of SLT on vascular dementia, its potential cellular mechanism has not been fully explored. METHODS: Male adult Sprague-Dawley (SD) rats were subjected to microsphere-embolized cerebral ischaemia. Immunostaining and Western blotting were performed to assess astrocytic reaction. Human astrocytes exposed to oxygen-glucose deprivation (OGD) were used to elucidate the effects of SLT-induced inflammation and astrocytic reaction. RESULTS: A memory recovery effect was found to be associated with the cerebral ischaemia-induced expression of inflammatory proteins and the suppression of LCN2 expression in the brain. Additionally, SLT reduced the astrocytic reaction, LCN2 expression, and the phosphorylation of STAT3 and JAK2. For in vitro experiments, OGD-induced expression of inflammation and LCN2 was also decreased in human astrocyte by the SLT treatment. Moreover, LCN2 overexpression significantly enhanced the above effects. SLT downregulated these effects that were enhanced by LCN2 overexpression. CONCLUSIONS: SLT mediates neuroinflammation, thereby protecting against ischaemic brain injury by inhibiting astrogliosis and suppressing neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing a new idea for the treatment strategy of ischaemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Demência Vascular/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Lipocalina-2/antagonistas & inibidores , Lipocalina-2/metabolismo , Memória/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Transfecção
17.
Zhongguo Zhong Yao Za Zhi ; 43(22): 4486-4490, 2018 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-30593243

RESUMO

Ischemic cerebrovascular disease and cerebral ischemia/reperfusion injury threaten the health of human being. We studied the protective effect of Ginkgo biloba extract 50 (EGb50) on the mitochondrial function in SH-SY5Y cells after hypoxia/reoxygenation (H/R) injury and explored its mechanisms, so as to provide new ideas for studies on the treatment for ischemic cerebrovascular disease. We established the H/R injury model in SH-SY5Y cells after administrating EGb50. Subsequently, the mitochondrial membrane potential and the concentration of intracellular Ca²âº were measured by flow cytometer. The levels of optic atrophy1 (Opa1) and dynamin-like protein 1 (Drp1) were evaluated by immunofluorescence and western blot. The results showed that the mitochondrial membrane potential was decreased and the level of intracellular Ca²âº was increased after H/R injury. Moreover, the expression of mitochondrial fusion protein Opa1 was decreased, while the expression of mitochondrial fission protein Drp1 was increased. However, EGb50 significantly increased the mitochondrial membrane potential and suppressed the level of intracellular Ca²âº. In addition, EGb50 increased the expression of Opa1 and decreased the expression of Drp1. The results demonstrated that EGb50 has a neuroprotective effect on SH-SY5Y cells after H/R injury, and could improve the energy metabolism and mitochondrial function. The underlying mechanisms may be associated with the regulation of mitochondrial fusion and fission, which provided data support for the treatment of ischemic cerebrovascular disease with EGb50.


Assuntos
Mitocôndrias , Traumatismo por Reperfusão , Hipóxia Celular , Ginkgo biloba , Humanos , Potencial da Membrana Mitocondrial , Extratos Vegetais
18.
Zhongguo Zhong Yao Za Zhi ; 40(10): 1984-8, 2015 May.
Artigo em Chinês | MEDLINE | ID: mdl-26390660

RESUMO

To observe the protective effect and mechanism of Sailuotong capsule in focal cerebral ischemia/reperfusion. The 90 min middle cerebral artery occlusion (MCAO) reperfusion model was established. The expressions of dynamin-related protein 1 ( Drp1) and optic atrophy 1 (Opa1) were tested by Western blot. The transmission electron microscope was used to observe the changes in the mitochondrial ultra-structure. The pathological morphological changes were observed through the HE staining. The immunohistochemical method was used to test Drp1 and Opa1 expressions. Sailuotong capsule (33, 16.5 mg x kg(-1), ig) can inhibit the abnormal mitochondrial fission and fusion in the cortical area on the ischemia side and the mitochondrial fission gene expression and promote the mitochondrial fusion gene Opa1 expression, so as to alleviate the energy metabolism disorder caused by ischemia/reperfusion. Sailuotong capsule can inhibit the abnormal mitochondrial dynamics in peri-ischemic regions and maintain the normal morphology of mitochondria, which may be the mechanism of Sailuotong capsule in promoting the self-recovery function in the ischemic brain region.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/cirurgia , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Mitocôndrias/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA