RESUMO
BACKGROUND: Tripterygium glycoside tablets (TGT) is the most common preparation from Tripterygium wilfordii Hook F, which is widely used in clinical for treating rheumatoid arthritis (RA) and other autoimmune diseases. However, its serious reproductive toxicity limits its application. PURPOSE: This study aimed to elucidate the toxic effects of TGT on the reproductive system of male RA rats and its potential toxic components and mechanism. METHODS: Collagen-induced arthritis (CIA) rat model was established, and TGT suspension was given at low, medium, and high doses. Gonadal index, pathological changes, and the number of spermatogenic cells were used to evaluate the toxic effects of TGT on the reproductive system. Non-targeted metabolomics of testicular tissue was conducted by UHPLC-QTOF/MS. Combined with network toxicology, the key targets of TGT-induced reproductive toxicity were screened and RT-qPCR was used to validation. In vitro toxicity of 19 components of TGT was evaluated using TM3 and TM4 cell lines. Molecular docking was used to predict the interaction between toxic components and key targets. RESULTS: TGT reduced testicular and epididymis weight. Pathology analysis showed a lot of deformed and atrophic spermatogenic tubules. The number of spermatogenic cells decreased significantly (P<0.0001). A total of 58 different metabolites including platelet-activating factor (PAF), lysophosphatidylcholine (Lyso PC), phosphatidylinositol (PI), glutathione (GSH), and adenosine monophosphate (AMP) were identified by testicular metabolomics. Glycerophospholipid metabolism, ether lipid metabolism, and glutathione metabolism were key pathways responsible for the reproductive toxicity of TGT. Ten key reproductive toxicity targets were screened by network toxicology. The cytotoxicity test showed that triptolide, triptonide, celastrol, and demethylzeylasteral could significantly reduce the viability of TM3 and TM4 cells. Alkaloids had no apparent toxic effects. Molecular docking showed that the four toxic components had a good affinity with 10 key targets. All binding energies were less than -7 kcal/mol. The RT-qPCR results showed the Cyp19a1 level was significantly up-regulated. Pik3ca and Pik3cg levels were significantly down-regulated. CONCLUSION: Through testicular metabolomics, we found that TGT may cause reproductive toxicity through CYP19A1, PIK3CA, and PIK3CG three target, which was preliminarily revealed. This study laid the foundation for elucidating the toxicity mechanism of TGT and evaluating its safety and quality.
Assuntos
Artrite Reumatoide , Glicosídeos Cardíacos , Medicamentos de Ervas Chinesas , Ratos , Masculino , Animais , Glicosídeos/uso terapêutico , Tripterygium/química , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Glicosídeos Cardíacos/uso terapêutico , Testículo , Artrite Reumatoide/tratamento farmacológico , Comprimidos , Citocromo P-450 CYP1A1RESUMO
BACKGROUND: Autologous fat grafting is a common method for soft tissue defect repair. However, the high absorption rate of transplanted fat is currently a bottleneck in the process. Excessive inflammation is one of the main reasons for poor fat transplantation. Salvianolic acid B (Sal-B) is a herbal medicine that shows promise for improving the effectiveness of fat transplantation. OBJECTIVE: The aim of this study was to improve fat graft survival by injecting Sal-B into fat grafts locally. METHODS: In vivo, 0.2 mL of Coleman fat was transplanted into nude mice along with Sal-B. The grafts were evaluated by histologic analysis at 2, 4, and 12 weeks posttransplantation and by microcomputed tomography at 4 weeks posttransplantation. In vitro ribonucleic acid sequencing, cell proliferation assays, anti-inflammatory activity assays, molecular docking studies, and kinase activity assays were performed in RAW264.7 cells to detect the potential mechanism. RESULTS: Sal-B significantly improved fat graft survival and attenuated adipose tissue fibrosis and inflammation. Sal-B also inhibited the polarization of M1 macrophages in fat grafts. In vitro, Sal-B inhibited the proliferation and activation of inflammatory pathways in RAW264.7 cells. In addition, Sal-B had an inhibitory effect on NF-κB (nuclear factor κ light polypeptide gene enhancer in B cells) signaling. This bioactivity of Sal-B may result from its selective binding to the kinase domain of the inhibitor of NF-κB kinase subunit ß. CONCLUSIONS: Sal-B could serve as a promising agent for improving the effect of fat transplantation by inhibiting the polarization of M1 macrophages through NF-κB signaling.
Assuntos
Inflamação , NF-kappa B , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Microtomografia por Raio-X , Macrófagos/metabolismoRESUMO
Chukrasia tabularis is an economically important tree and widely cultured in the southeast of China. Its barks, leaves, and fruits are consumed as a traditional medicine and perceived as a valuable source for bioactive limonin compounds. The extracts from root barks of C. tabularis showed significant anti-inflammatory effect. The aim of this research was to explore the material basis of C. tabularis anti-inflammatory activity, and to purify and identify anti-inflammatory active ingredients. By a bioassay-guided isolation of dichloromethane fraction obtained two novel phragmalin limonins, Chukrasitin D and E (1 and 2), together with 12 known limonins (3-14). The chemical structure of these compounds is determined on the basis of extensive spectral analysis and chemical reactivity. In addition, the activities of these isolated limonins on the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and nuclear factor kappa B (NF-κB) in RAW264.7 cells induced by lipopolysaccharide (LPS) were evaluated. Limonins 1 and 2 indicated significant anti-inflammatory activity with IC50 values of 6.24 and 6.13 µM. Compound 1 notably inhibited the production of NF-κB, TNF-α and interleukin 6 (IL-6) in macrophages. The present results suggest that the root barks of C. tabularis exhibited anti-inflammatory effect and the limonins may be responsible for this activity.
RESUMO
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular method in hearing research. However, few studies have considered efficient stimulation parameters for the auditory experimental design of fNIRS. The objectives of our study are (1) to identify the most effective paradigm for the stimulation blocks with increasing duration (8s, 10s, 15s, 20s) in terms of response amplitude, i.e., the most-efficient stimulation duration; (2) to assess the linearity/nonlinearity of the hemodynamic responses with respect to increasing block durations; and (3) to generalize results to more ecological environmental stimuli. We found that cortical activity is augmented following the increments in stimulation durations and reaches a plateau after about 15s of stimulation. The linearity analysis showed that this augmentation due to stimulation duration is not linear in the auditory cortex, non-linearity being more pronounced for shorter durations (15s and 20s). The 15s block duration that we propose as the most suitable precludes signal saturation and is associated with a high response amplitude and a relatively short total experimental duration. Moreover, the distribution of stimuli among the 15s blocks, which is the most effective for white noise stimulation, also provides a comparably strong response for environmental sounds. The sum of these findings suggests that 15s stimulation duration used in the appropriate experimental setup allows researchers to acquire optimal fNIRS signal quality.
Assuntos
Córtex Auditivo , Espectroscopia de Luz Próxima ao Infravermelho , Estimulação Acústica , Córtex Auditivo/fisiologia , Hemodinâmica , Espectroscopia de Luz Próxima ao Infravermelho/métodosRESUMO
Clausena lenis Drake (C. lenis) is a folk medicinal herb to treat influenza, colds, bronchitis, and malaria. The 95% and 50% ethanol extract of C. lenis showed significant nitric oxide (NO) inhibition activity in BV-2 microglial cells stimulated by lipopolysaccharide (LPS). Bio-guided isolation of the active extract afforded five new compounds, including a chlorine-containing furoquinoline racemate, (±)-claulenine A (1), an amide alkaloid, claulenine B (2), a prenylated coumarin, claulenin A (3), a furocoumarin glucoside, clauleside A (4), and a multi-prenylated p-hydroxybenzaldehyde, claulenin B (5), along with 33 known ones. Their structures were determined via spectroscopic methods, and the absolute configurations of new compounds were assigned via the electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction analysis. Compounds 2, 23, 27, 28, 33, and 34 showed potent anti-neuroinflammatory effects on LPS-induced NO production in BV-2 microglial cells, with IC50 values in the range of 17.6-40.9 µM. The possible mechanism was deduced to interact with iNOS through molecular docking.
Assuntos
Clausena , Linhagem Celular , Microglia , Simulação de Acoplamento Molecular , Óxido NítricoRESUMO
In the clinical practice of traditional Chinese medicine, toxic heat and blood stasis syndrome (THBSS) is a common syndrome observed in various critical diseases. Paeoniae Radix Rubra (PRR) has known therapeutic effects on THBSS. However, its pharmacodynamic mechanisms and effective substances in the treatment of THBSS still need further elucidation. Our previous study indicated that THBSS had three stages of progression, and the abnormal biochemical indices of each stage were different. Therefore, this study aimed to elucidate the pharmacodynamic mechanisms and effective substances of PRR for the treatment of THBSS with a stage-oriented strategy. Specifically, research was performed separately in two stable stages of THBSS: the excessive heat and little blood stasis (EHLBS) and blood stasis (BS) stages. THBSS model rats, at different time periods after syndrome initiation (first 5 h for EHLBS and 24 h later for BS), were used to conduct the two-stage investigation. Targeted metabonomics analysis was performed to elucidate the pharmacodynamic mechanisms of PRR in the treatment of EHLBS or BS. Based on the relationship between the individual differences in blood drug concentrations and pharmacodynamic effects, partial least squares regression analysis was employed to screen for the effective substances from the original constituents and metabolites of PRR. We found that PRR could upregulate primary bile acid biosynthesis, glycerophospholipid metabolism, ether lipid metabolism, and five amino acid metabolic pathways (e.g., arginine and proline metabolism) to treat EHLBS. Meanwhile, PRR alleviated BS by upregulating primary bile acid biosynthesis and downregulating glycerophospholipid metabolism. But PRR had no obvious effects on ether lipid metabolism and amino acid metabolism in this stage. In total, 17 and 9 potential effective substances were found in the EHLBS and BS stages, respectively, among which there were only five common compounds between the two stages. To our knowledge, sixteen compounds were regarded as potential effective substances of PRR for the first time. Therefore, the pharmacodynamic mechanisms and effective substances of PRR in the treatment of EHLBS and BS were partly different. Overall, this stage-oriented strategy provides a new way to study the pharmacodynamic mechanisms and effective substances of traditional Chinese drugs.
RESUMO
Clematis florida is widely used in She Ethnopharmacy in China owing to its significant anti-inflammatory activities. This study aimed to investigate the anti-inflammatory effect of the active fraction of C. florida (CFAF) in an arthritis animal model and its possible mechanism. Pre-inflammatory cytokine levels were examined by ELISA. CFAF can significantly improve the symptoms of arthritis such as paw swelling, arthritic index, and histological condition in AA rat. CFAF can also reduce levels of IL-1ß, TNF-α and IL-6. Further studies showed that triterpene saponins from CFAF induced anti-inflammatory activity inhibited inflammatory mediators by blocking JAK/STAT signalling pathways in the LPS-treated macrophages.
Assuntos
Clematis , Saponinas , Triterpenos , Animais , Anti-Inflamatórios/farmacologia , Citocinas , Feminino , Extratos Vegetais , Ratos , Saponinas/farmacologia , Triterpenos/farmacologiaRESUMO
Breast tumor has become one of the malignant tumors with the highest incidence, and is a serious threat to human health, especially to women. Chemotherapy is an important anti-breast tumor therapy, which can be used in almost every stage of breast tumor therapy alone or in the combination with surgery and radiation therapy. Alkaloids are a kind of ubiquitous natural products, and important active components of various medicinal plants. A large number of studies have shown that alkaloids could exert an anti-breast tumor effect by inhibiting proliferation, metastasis and angiogenesis, resisting mitosis, promoting apoptosis and autophagy, and triggering cell cycle arrest. The extensive anti-breast tumor effect makes alkaloids an important candidate drug source. This paper reviews the anti-breast tumor mechanism of natural products of alkaloids.
Assuntos
Alcaloides , Neoplasias da Mama , Alcaloides/farmacologia , Apoptose , Autofagia , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , HumanosRESUMO
Magnetic hyperthermia (MH) mediated by magnetic nanoparticles is one of the most promising antitumor modalities. The past several decades have witnessed great progress for MH antitumor therapy in scientific trials and clinic applications since it was initially advanced by Gilchrist et al. The ultimate object of MH in vivo is to efficiently kill cancer cells, and hence, it is of great importance to develop an optimized cellular MH method to evaluate the therapeutic efficiency in vitro. In this study, we systematically studied the considerable affecting factors of cancer cell-killing efficiency during the cellular MH process, including the region of cell vessel positioned inside the alternating magnetic field copper coil, the magnetic field amplitude, the types of cancer cells, etc. Taking all these into account, we introduced a method for standardizing the cellular MH process to evaluate the cell-killing efficiency.
Assuntos
Hipertermia Induzida , Nanoestruturas , Linhagem Celular Tumoral , Compostos Férricos , Humanos , HipertermiaRESUMO
Astragali Radix total flavonoids (ARTF) is one of the main bioactive components of Astragali Radix (AR), and has many pharmacological effects. However, its metabolism and effective forms remains unclear. The HPLC-DAD-ESI-IT-TOF-MSn technique was used to screen and tentatively identify the in vivo original constituents and metabolites of ARTF and to clarify their distribution in rats after oral administration. In addition, modern chromatographic methods were used to isolate the main metabolites from rat urine and NMR spectroscopy was used to elucidate their structures. As a result, 170 compounds (23 original constituents and 147 metabolites) were tentatively identified as forms existing in vivo, 13 of which have the same pharmacological effect with ARTF. Among 170 compounds, three were newly detected original constituents in vivo and 89 were new metabolites of ARTF, from which 12 metabolites were regarded as new compounds. Nineteen original constituents and 65 metabolites were detected in 10 organs. Four metabolites were isolated and identified from rat urine, including a new compound (calycoisn-3'-O-glucuronide methyl ester), a firstly-isolated metabolite (astraisoflavan-7-O-glucoside-2'-O-glucuronide), and two known metabolites (daidzein-7-O-sulfate and calycosin-3'-O-glucuronide). The original constituents and metabolites existing in vivo may be material basis for ARTF efficacy, and these findings are helpful for further clarifying the effective forms of ARTF.
Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Metaboloma , Metabolômica , Administração Oral , Animais , Astragalus propinquus , Cromatografia Líquida de Alta Pressão , Monitoramento de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Flavonoides/administração & dosagem , Metabolômica/métodos , Estrutura Molecular , Ratos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Distribuição TecidualRESUMO
Huangqin Qinfei Decoction (HQD) is a traditional Chinese medicine that is administered for acute pneumonia, bronchial inflammation, acute bronchitis and acute lung infection. In this study, we used liquid chromatography linked with tandem mass spectrometry (LC-MS/MS) for the concurrent identification of 11 bioactive compounds; namely, baicalin, baicalein, wogonoside, scutellarin, wogonin, oroxylin A, geniposide, genipin, geniposidic acid, chlorogenic acid, and crocin-I, for the quality control of HQD. The evaluation was conducted on an Agilent Poroshell 120 EC-C18 (2.1mm×100mm, 2.7µm) with gradient elution in the mobile phase with 0.1% formic acid and 1mM/L ammonium acetate in water as solvent A and methanol as solvent B at a flow rate of 0.3mL/min in under 12 min. Mass spectrometric detection was conducted in the selected reaction monitoring mode utilizing electro spray ionization in the positive and negative modes. Every one of the calibration curves had good linearity with R2 >0.9992. Intra-day and inter-day accuracies for every one of the evaluated components were expressed as the relative standard deviation (RSD) from 1.72%-5.02% and 0.63%-5.99%, respectively. The recuperation of the 11 compounds that were measured at the three concentrations was within 94.05%-105.18%, with the RSD ≤ 6.26%. The use of this method was determined through the effective evaluation of 11 compounds in 5 batches of HQD. The confirmed method is precise, sensitive, and effective for identifying the contents of the chosen compounds in HQD for quality control.
Assuntos
Cromatografia Líquida , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Calibragem , Cromatografia Líquida/normas , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/normas , Espectrometria de Massas em Tandem/normasRESUMO
BACKGROUND: Hypertension is a clinically common cardiovascular disease, resulting in many complications. Omega-3 might be beneficial in lowering blood pressure. This protocol will be performed to evaluate the effects of omega-3 on blood pressure in hypertensive patients. METHODS: We will search both the electronical databases and paper-published journals. Endnote software will be used to complete study screening and data extraction by 2 reviewers independently. Review Manager software will be used to synthesize the data. The primary outcomes are systolic blood pressure and diastolic blood pressure. Secondary outcome is the adverse effects. RESULTS: The results of this study will propose a trustworthy evidence to evaluate the effects of omega-3 on blood pressure of hypertensive patients. CONCLUSION: The conclusion of our systematic review will reply whether omega-3 is an effectual intervention to lower blood pressure of hypertensive patients. ETHICS: This review does not require ethical approval because all of the data analyzed in this review have been published. REGISTRATION NUMBER: INPLASY202070103 (DOI number: 10.37766/inplasy2020.7.0103).
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Ácidos Graxos Ômega-3/uso terapêutico , Hipertensão/prevenção & controle , Ácidos Graxos Ômega-3/farmacologia , Humanos , Metanálise como Assunto , Revisões Sistemáticas como AssuntoRESUMO
This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts (CFs) and its potential mechanism, as well as whether sodium tanshinone IIA sulfonate (STS) has protective effect on CFs and its possible mechanism. Our data demonstrated that X-rays inhibited cell growth and increased oxidative stress in CFs, and STS mitigated X-ray-induced injury. Enzyme-linked immuno-sorbent assay showed that X-rays increased the levels of secreted angiotensin II (Ang II) and brain natriuretic peptide (BNP). STS inhibited the X-ray-induced increases in Ang II and BNP release. Apoptosis and cell cycle of CFs were analyzed using flow cytometry. X-rays induced apoptosis in CFs, whereas STS inhibited apoptosis in CFs after X-ray irradiation. X-rays induced S-phase cell cycle arrest in CFs, which could be reversed by STS. X-rays increased the expression of phosphorylated-P38/P38, cleaved caspase-3 and caspase-3 as well as decreased the expression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK 1/2)/ERK 1/2 and B cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein (BAX) in CFs, as shown by Western blotting. STS mitigated the X-ray radiation-induced expression changes of these proteins. In conclusion, our results demonstrated that STS may potentially be developed as a medical countermeasure to mitigate radiation-induced cardiac damage.
Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/efeitos da radiação , Fenantrenos/farmacologia , Lesões por Radiação/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: This study addresses the rapid discovery of the active compounds (the original constituents and/or metabolites) of a traditional Chinese drug, Smilacis Glabrae Rhizoma (SGR). AIM OF THE STUDY: The aim of this study was to develop a new method to find out the active compounds of traditional drugs in vivo. MATERIALS AND METHODS: A method was established to discover and identify the potential active compounds in drug-containing plasma from rats that were orally administered SGR extract, utilizing the relationship between the individual differences in blood drug concentrations in the rats and the resulting differences in pharmacological effect, and the method was denoted as the RID-PE method. For this method, we used high-performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time-of-flight multistage mass spectrometry (LC-MSn) to identify the compounds (the original constituents and metabolites) and to determine the peak areas of the compounds in drug-containing plasma following SGR treatment. The anti-inflammatory effect of SGR was evaluated using a carrageenan-induced inflammatory rat model. According to the percent inhibition of paw edema in each model rat (14 rats total) orally administered SGR extract, the plasma samples from the rats were sorted and divided into 7 groups. Each group consisted of two plasma samples, and their percent inhibition of paw edema were similar to each other. We performed an LC-MSn analysis on 3 plasma groups, which showed large differences in the inhibition rates, with percent inhibitions of 92.7%, 72.4% and 38.4%. The correlation coefficients (r) between the peak area of each compound and the pharmacological effect (inhibition ratio) of SGR in the three groups were analyzed using SPSS software. When the correlation coefficients of the compounds are greater than 0.8 (0.8 < r ≤1), these compounds are strongly and positively correlated with anti-inflammatory activity, making them potential anti-inflammatory active compounds. RESULTS: Fifty-eight potential anti-inflammatory compounds (0.8 < r ≤ 1) from SGR were discovered in model rat plasma using the RID-PE method, 47 of which were considered to be new potentially anti-inflammatory compounds. Among these compounds, four original constituents and 5 isomers of potential anti-inflammatory metabolites were validated to have significant anti-inflammatory effects, and they included astilbin, syringic acid, catechin, coumalic acid, resveratrol-3'-O-glucuronide (RG, isomer of M2 or M3), 3'-O-methyl-(+)-epicatechin-4'-O-glucuronide (CA-1, isomer of M16), 4'-O-methyl-(+)-epicatechin-3'-O-glucuronide (CA-2, isomer of M16), 4'-O-methyl-(+)-epicatechin-7-O-glucuronide (CA-3, isomer of M16) and 3'-O-methyl-(+)-epicatechin-7-O-glucuronide (CA-4, isomer of M16). In addition, four isomers (CA-1-CA-4) were reported to have anti-inflammatory effects for the first time, and CA-3 was a new compound. CONCLUSIONS: The RID-PE method can be used to discover and identify the active constituents and metabolites of SGR systematically and in vivo. Furthermore, these findings enhance our understanding of the metabolism and effective forms of SGR.
Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Smilax/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Edema/tratamento farmacológico , Edema/patologia , Inflamação/patologia , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Ratos , Ratos Sprague-Dawley , Rizoma , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Three undescribed azaphilones, phomopsones A-C (1-3) and two known azaphilones (4-5) were isolated from the culture of endophytic fungus Phomopsis sp. CGMCC No.5416 from the stems of Achyranthes bidentata. Their structures were determined by spectroscopic analysis (HRESIMS, 1D and 2D NMR), and the absolute configurations were determined by CD spectroscopy. Compounds 2 and 3 showed significant inhibitory activities against HIV-1 with against HIV-1 with IC50 values of 7.6 and 0.5 µmol/L, respectively. Compounds 2 and 3 also displayed moderate cytotoxicity with CC50 values of 3.2-303 µmol/L against A549, MDA-MB-231 and PANC-1 cell lines. Moreover, compound 3 can induce the early apoptosis of PANC-1 cancer cells with the apoptosis rate of 28.54%.
Assuntos
Fármacos Anti-HIV/farmacologia , Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Phomopsis/química , Pigmentos Biológicos/farmacologia , Achyranthes/microbiologia , Fármacos Anti-HIV/isolamento & purificação , Antineoplásicos/isolamento & purificação , Apoptose , Benzopiranos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , China , Endófitos/química , HIV-1/efeitos dos fármacos , Humanos , Estrutura Molecular , Pigmentos Biológicos/isolamento & purificação , Caules de Planta/microbiologiaRESUMO
Hepatocellular carcinoma (HCC) is a prevalent and highly malignant cancer throughout the world. Effective treatment of this disease is impeded by the high rate of metastasis, recurrence, and chemoresistance. Recent studies have revealed the close relationship between the malignant phenotype of HCC and cancer stem cells (CSCs). Therefore, CSC-targeted therapy is considered a promising strategy to eradicate HCC. Traditional Chinese medicine (TCM) can be effective in preventing recurrence and metastasis of some advanced HCC. A growing amount of literature has discovered that extracts or compounds derived from TCM exert an anti-CSC effect. This review introduces some formulas and chemical compounds derived from TCMs that have been reported to inhibit CSCs of HCC; these TCM-related drugs may help to provide an alternative approach to help manage cancers, especially for HCC which has a great potential of metastasis, recurrence, and chemoresistance.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Medicina Tradicional Chinesa , Células-Tronco Neoplásicas , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/terapiaRESUMO
Ganoderma mushrooms are widely used in clinical therapies and functional foods. The antidiabetic effect of Ganoderma has become a research hot spot in recent decades. To search for a superior antidiabetic Ganoderma extract, five common Ganoderma species (G. lucidum, G. sinense, G. tsugae, G. applanatum, and G. leucocontextum) were investigated. A total of 10 fractions, including a total triterpenes fraction and a crude polysaccharides fraction for each, were prepared for further assays. Activities of α-glucosidase and α-amylase are inhibited dominantly by triterpenes from all five Ganoderma species rather than the polysaccharides. G. lucidum triterpenes inhibits α-glucosidase and α-amylase most significantly with IC50 values of 10.02 ± 0.95 µg/mL and 31.82 ± 4.30 µg/mL. Even more, triterpenes content was positively correlated with anti-α-glucosidase and anti-α-amylase activities. Therefore, triterpenes were considered to be the active compounds in inhibiting α-glucosidase and α-amylase activity. It is hoped that the results will provide more systematic information for the application of Ganoderma in the functional food and traditional medicine industries in the future.
Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Ganoderma/química , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Amilases/antagonistas & inibidores , Misturas Complexas/farmacologia , Polissacarídeos Fúngicos/farmacologia , Ganoderma/classificação , Fármacos Gastrointestinais , Humanos , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Triterpenos/farmacologia , alfa-GlucosidasesRESUMO
The influence of broad-spectrum antibiotics on the pharmacokinetics and biotransformation of major constituents of Shaoyao-Gancao decoction (SGD) in rats was investigated. The pharmacokinetic behaviors of paeoniflorin (PF), albiflorin (AF), liquiritin (LT), isoliquiritin (ILT), liquiritin apioside (LA), isoliquiritin apioside (ILA), and glycyrrhizic acid (GL), seven major constituents of SGD, as well as glycyrrhetinic acid (GA), a major metabolite of GL, were analyzed. A 1-week pretreatment with broad-spectrum antibiotics (ampicillin, metronidazole, neomycin, 1 g L-1; and vancomycin, 0.5 g L-1) via drinking water reduced plasma exposure of the major constituents. The AUC0-24 h of PF and LT was significantly decreased by 28.7% and 33.8% (P < 0.05 and P < 0.005), respectively. Although the differences were not statistically significant, the AUC0-24 h of AF, ILT, LA, ILA, and GL was decreased by 31.4%, 50.9%, 16.9%, 44.1%, and 37.0%, respectively, compared with the control group. In addition, the plasma GA exposure in the antibiotic-pretreated group was significantly lower (P < 0.005) than the control group. The in vitro stability of the major constituents of SGD in the rat intestinal contents with or without broad-spectrum antibiotics was also investigated. The major constituents were comparatively stable in the rat duodenum contents, and the biotransformation of GL mainly occurred in the rat colon contents. In summary, broad-spectrum antibiotics suppressed the absorption of the major constituents of SGD and significantly inhibited the biotransformation of GL to GA by suppressing the colon microbiota. The results indicated a potential clinical drug-drug interaction (DDI) when SGD was administered with broad-spectrum antibiotics.
Assuntos
Antibacterianos/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Interações Ervas-Drogas , Administração Oral , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Masculino , Ratos Sprague-DawleyRESUMO
Sibirioside A and angoroside C are two important phenylpropanoid glycosides of the traditional Chinese medicine Scrophulariae Radix. High performance liquid chromatography, coupled with an ion trap time-of-flight multistage mass spectrometry equipped with electrospray ionization source (HPLC-ESI-IT-TOF-MSn), was applied to the profile and we identified the metabolites of sibirioside A and angoroside C in vivo in rats. A total of four metabolites of sibirioside A were identified: SM1, SM2 and SM3 which were known as new compounds. A total of 25 metabolites were detected for angoroside C: AM4, AM5, AM6, AM7, AM16, AM17, AM20, AM21, AM22, AM23 and AM25 which were identified to be new compounds. The main metabolic reactions were hydrolysis, reduction, hydroxylation, methylation, sulfation, and gluconylation. The prototype of sibirioside A was widely distributed in tissues found in the heart, liver, spleen, lung, kidney, stomach and small intestine of rats, and mainly distributed in the stomach, small intestine, kidney and liver. But for angoroside C, nothing was found in the viscera except the stomach and small intestine. The metabolites of sibirioside A were mainly eliminated from feces, while it was urine for the metabolites of angoroside C. Furthermore, 19 metabolites were likely to have bioactivities based on the 'PharmMapper' analysis, which roughly matched the known pharmacological activities of Scrophulariae Radix (SR) and the prototypes. One of the main pharmacological activities of SR in traditional Chinese medicine is anti-diabetes, and the predicted results showed that SM1, SM2, SM3, AM2, AM4, AM5, AM6, AM9, AM10, AM11, AM12, AM13, AM15, AM18, AM19, AM24, and AM25 might be used to cure diabetes. These findings provide a reference for studying the metabolism, distribution and pharmacological actions of phenylpropanoid glycosides in vivo.