Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33101438

RESUMO

Even in individuals without diabetes, the incidence of coronary heart disease (CHD) increases with the rise in fasting plasma glucose (FPG); however, the threshold of FPG for CHD in rural areas of China is unclear. We retrospectively examined 2,987 people. Coronary angiography records were used to determine the presence of CHD as well as its severity. Risk factors for CHD and the relationship between different levels of FPG and CHD were analyzed. After adjusting for age, hypertension, dyslipidemia, smoking, drinking, chronic kidney disease, and previous ischemic stroke, the incidence of CHD in nondiabetic women began to increase when FPG exceeded 5.2 mmol/L (odds ratio (OR) = 1.438, 95% confidence interval (CI) = 1.099-1.880, p=0.008), and the degree of coronary artery lesions also became more severe (OR = 1.406, 95% CI = 1.107-1.788, p=0.005). However, no such correlations were found in nondiabetic men. In conclusion, among the nondiabetic women in rural areas of northern Henan, both the incidence of CHD and the severity of lesions increased when FPG levels were greater than 5.2 mmol/L, while no significant correlation between FPG and CHD was observed in diabetes-free men.

2.
Huan Jing Ke Xue ; 31(5): 1220-6, 2010 May.
Artigo em Chinês | MEDLINE | ID: mdl-20623855

RESUMO

To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Chuva , Solo/análise , Movimentos da Água , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Água Doce , Nitrogênio/análise , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA