Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3233-3241, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851116

RESUMO

Following the preparation of Acanthopanax senticosus total saponins microemulsion, the formulation and preparation technology were optimized and the quality was evaluated. The absorption characteristics of A. senticosus total saponins microemulsion by the self-microemulsifying drug delivery system(SMEDDS) were investigated in the unidirectional intestinal perfusion model in vivo. The oil phase, mass ratio(K_m), number of revolutions, and drug concentration were subjected to single-factor investigation with the area of pseudo-ternary phase diagram as the index. The process was optimized by D-optimal mixture design with the particle size as the index, and then the appearance, morphology, and particle size were investigated. The mass concentrations of eleutherosides B and E in the microemulsion were determined. The results showed that the optimum formulation of A. senticosus total saponins microemulsion was determined as follows: 20.8% of water phase, 31.2% of isopropyl palmitate, and 48.0% of soybean phospholipid and absolute ethanol(K_m=1∶1). As revealed by the observation under a transmission electron microscope, the microemulsion exhibited homogeneous dispersion and was a spherical emulsion droplet in the water-in-oil type. At room temperature, the pH value was 5.19, the refractive index 1.416 5, the average particle size(26.47±0.04)nm, and the polydispersity index(PDI) 0.118±0.03. The content of the eleutherosides B and E was 0.038 9 and 0.166 4 mg·mL~(-1), respectively. The preliminary stability study showed that the solution was clear and transparent within 30 d, without stratification or content change, indicating good stability. The absorption of microemulsion in each intestinal segment was significantly improved as compared with that of the A. senticosus total saponins, with the best absorption effect detected in the ileum, which has laid a foundation for further development and utilization of A. senticosus.


Assuntos
Eleutherococcus , Saponinas , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Absorção Intestinal , Tamanho da Partícula , Solubilidade , Tecnologia , Água
2.
Ying Yong Sheng Tai Xue Bao ; 33(12): 3433-3440, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36601851

RESUMO

We investigated community structure of macroinvertebrate, water environment factors, hydrological factors at 23 sampling sites of the Yongding River basin from spring 2017 (April) to autumn 2017 (November). We analyzed the composition, spatial and temporal distribution of the macroinvertebrate functional feeding groups, as well as their responses to changes in riverine habitat. A total of 78 macroinvertebrate species were identified, with 52, 50 and 53 macroinvertebrate species in spring, summer and autumn respectively. The dominant functional feeding groups were gather-collectors, followed by predators, while the proportion of scrapers, filter-collectors and shredders were extremely low. Dominant species in the three seasons were all gather-collectors, including Orthocladius, Rheotanytarsus, Cricotopus in spring, Glyptotendipes in summer, and Polypedilum, Chironomus, Orthocladius in autumn. Results of redundancy analysis showed that the functional feeding groups of macroinvertebrate community structure were mainly influenced by water temperature, flow velocity, salinity, and total phosphorus in spring, by total phosphorus, dissolved oxygen, conductivity and flow capacity in summer, and by total phosphorus and dissolved oxygen in autumn. Total phosphorus had positive correlation with gather-collectors in all three seasons, indicating that the functional feeding groups of macroinvertebrates were affected by water pollution. The evaluation based on the metrics of functional feeding groups showed that: 1) in terms of material cycle, primary productivity of Guishui River were significantly higher than other regions, and that in autumn were significantly higher than other seasons. The secondary productivity and decomposition capacity of Yanghe River were significantly higher than other regions, and those in spring were significantly higher than other seasons. The autotrophy/heterotrophy of Yanghe River was significantly lower than other regions, and that in spring were significantly higher than other seasons. 2) The longitudinal transport capacity of Sanggan River was significantly higher than other regions, and that in autumn was significantly higher than other seasons. 3) The lateral input capacity of Guishui River was significantly higher than other regions, and that in summer was significantly higher than other seasons.


Assuntos
Chironomidae , Invertebrados , Animais , Rios/química , Ecossistema , Estações do Ano , Fósforo , Água , Monitoramento Ambiental
3.
Artigo em Inglês | MEDLINE | ID: mdl-30622604

RESUMO

This study aims at exploring the cardiovascular pathophysiological mechanism of TCM (traditional Chinese medicine) pulse by detecting the correlation between radial artery pulse wave variables and pulse wave velocity/echocardiographic parameters. Two hundred Chinese subjects were enrolled in this study, which were grouped into health control group, hypertension group, and hypertensive heart disease group. Physical data obtained in this study contained TCM pulse images at "Guan" position of the left hand, pulse wave velocity, and echocardiographic parameters. Linear and stepwise regression analysis was performed to assess the association of radial artery pulse wave variables with pulse wave velocity and echocardiographic parameters in the total population and in each different group. After adjusting for related confounding factors, decrease of t1, t5 and increase of h1, h3/h1 were statistically associated with arterial stiffness in the total population (P<0.05). Moreover, the correlation study in each group showed that the decrease of both t3 and h5 was also related to arterial stiffness (P<0.05). In terms of echocardiographic parameters, the height of dicrotic wave indicated by h5 was the most relevant pulse wave variable. For the health control, h5 was negatively associated with interventricular septal thickness (VST) and left ventricular posterior wall thickness (PWT) (P<0.05), while for the hypertension population and those with target-organ damage to heart, increase of h5 might be associated with decrease of ejection fraction (EF) and increase of all the remaining echocardiographic parameters especially for left ventricular end-systolic diameter (LVDs) and Left ventricular end-diastolic diameter (LVDd) (P<0.05). In conclusion, we found radial artery pulse wave variables were in association with the arterial stiffness and echocardiographic changes in hypertension, which would provide an experimental basis for cardiovascular pathophysiological mechanism of radial artery pulse wave variables.

4.
PLoS One ; 6(5): e19763, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625540

RESUMO

Homo sapiens J domain protein (HSJ1) is a J-domain containing co-chaperone that is known to stimulate ATPase activity of HSP70 chaperone, while it also harbors two ubiquitin (Ub)-interacting motifs (UIMs) that may bind with ubiquitinated substrates and potentially function in protein degradation. We studied the effects of HSJ1a on the protein levels of both normal and the disease--related polyQ-expanded forms of ataxin-3 (Atx3) in cells. The results demonstrate that the N-terminal J-domain and the C-terminal UIM domain of HSJ1a exert opposite functions in regulating the protein level of cellular overexpressed Atx3. This dual regulation is dependent on the binding of the J-domain with HSP70, and the UIM domain with polyUb chains. The J-domain down-regulates the protein level of Atx3 through HSP70 mediated proteasomal degradation, while the UIM domain may alleviate this process via maintaining the ubiquitinated Atx3. We propose that co-chaperone HSJ1a orchestrates the balance of substrates in stressed cells in a Yin-Yang manner.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismo , Ataxina-3 , Western Blotting , Células Cultivadas , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Rim/citologia , Rim/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA