Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 99: 153967, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35182903

RESUMO

BACKGROUND: Rheum officinale Baill. (ROB), as one of the traditional Chinese medicines for promoting blood circulation and removing blood stasis, has a wide range of pharmacological effects, such as cardiovascular protection, and has become a common drug in the clinical care of thrombosis. OBJECTIVE: Although there are some pharmacological studies on ROB in the treatment of thrombotic diseases, the mechanism and material basis are still unclear. Based on the arginine biosynthesis signalling pathway, this research explored the target proteins and metabolites related to the intervention of ROB in thrombosis and expounded on the antithrombotic mechanism of ROB from the comprehensive perspectives of target prediction, intermediate metabolites and potential metabolic pathways. METHODS: In this research, ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technology was used to qualitatively detect the chemical compounds of ROB, and the antithrombotic activity of ROB was evaluated by establishing a zebrafish model. The target function was predicted by network pharmacology, and differential metabolites were screened by metabolomics and multivariate statistical analysis methods. Correlation analysis of network pharmacology and metabolomics screening results was conducted to identify the potential pathway of ROB intervention in thrombosis, and the prediction results were further verified. RESULTS: ROB significantly reduced the reactive oxygen species (ROS) staining intensity in zebrafish induced by phenylhydrazine (PHZ) and improved the inhibition rate of thrombosis. By constructing the "herb-disease-component-target" network, it was concluded that the active ingredients of ROB in treating thrombosis involved emodin, aloe-emodin and physcion, and the key targets included nitric oxide synthase 2 (NOS2) and nitric oxide synthase 3 (NOS3). A total of 341 differential metabolites in zebrafish with thrombosis were screened by partial least squares discriminant analysis (PLS-DA). The results of reverse transcription-polymerase chain reaction (RT-PCR) experiments and targeted metabolomics verification showed that ROB was mainly involved in improving thrombosis by upregulating the expression of NOS3 mRNA and regulating the levels of arginine, glutamate and glutamine in the arginine biosynthesis pathway. CONCLUSIONS: ROB improved thrombosis by regulating the expression of NOS3 mRNA and the contents of arginine, glutamate and glutamine in the arginine biosynthesis signalling pathway.

2.
Fish Physiol Biochem ; 47(5): 1611-1622, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34427827

RESUMO

Lipid metabolism disorders are found ubiquitously in farmed fish and occur as a result of excessive fat accumulation. Previous studies have found that miR-33 is involved in lipid metabolism; however, its role in fish lipid metabolism is unclear. We sought to clarify this relationship in grass carp in vivo and in vitro. Our findings revealed the length of miR-33 to be 65 bp. Phylogenetic tree analysis showed that grass carp miR-33 was most closely related to fish miR-33 (Siganus canaliculatus). Hepatocytes transfected with miR-33 mimic displayed markedly raised TG content (P < 0.05) as well as increased levels of lipid synthesis-related transcription factors (P < 0.05). Compared with blank and saline groups, total serum cholesterol, AST, and LDL levels were suppressed in groups treated with the miR-33 antagomir (P < 0.05). Moreover, the expression levels of PPARγ and SREBP-1c mRNA were significantly decreased in contrast to those found in the control group (P < 0.05). Similar findings were noted in the expression of immune-related proinflammatory molecules (TNFα, IL-1ß, IL-6, and NF-κB), which also demonstrated decreased levels (P < 0.05). Conversely, high expressions of anti-inflammatory factors (TGF-ß1 and IL-10) were noted (P < 0.05). This investigation strongly supports the role of miR-33 in hepatopancreas-based lipid metabolism and immunity. miR-33 may have been highly conserved in early vertebrates in order to facilitate liver-specific metabolic and immunomodulatory functions. Our findings provide a basis for further investigations exploring the mechanisms surrounding fish lipid metabolism and may aid in preventing and treating immunocompromised fish as well as fish with fatty hepatopancreas, and other metabolic diseases.


Assuntos
Carpas , Doenças dos Peixes , Doenças Metabólicas , MicroRNAs , Ração Animal/análise , Animais , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Proteínas de Peixes/genética , Imunidade Inata , Metabolismo dos Lipídeos , Lipídeos , MicroRNAs/genética , Filogenia , Transdução de Sinais
3.
Front Pharmacol ; 12: 688746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393777

RESUMO

The traditional Chinese medicine Poria cum Radix Pini (PRP) is a fungal medicinal material that has been proven to play an important role in the treatment of arrhythmia. However, the mechanism of its effect on arrhythmia is still unclear. In this study, network pharmacology and metabolomics correlation analysis methods were used to determine the key targets, metabolites and potential pathways involved in the effects of PRP on arrhythmia. The results showed that PRP can significantly improve cardiac congestion, shorten the SV-BA interval and reduce the apoptosis of myocardial cells induced by barium chloride in zebrafish. By upregulating the expression of the ADORA1 protein and the levels of adenosine and cGMP metabolites in the cGMP-PKG signalling pathway, PRP can participate in ameliorating arrhythmia. Therefore, we believe that PRP shows great potential for the treatment of arrhythmia.

4.
Fish Physiol Biochem ; 46(5): 1665-1677, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32447624

RESUMO

Hepatic lipid metabolism disorder due to excessive fat accumulation in fish is a significant problem in aquaculture. Studies have shown that grape seed procyanidin extract (GSPE) can regulate fish lipid metabolism and improve fish immunity. However, the mechanism is unclear. In this study, we used grass carp that stores excess fat in the liver as a model. In vitro, GSPE treatment of hepatocytes for 3 h significantly decreased TG content, accompanied with decreased expression of SREBP-1c, FAS, and ACC and increased expression of PPARα, ATGL, and LPL. GSPE treatment for 1 h significantly decreased expression of pro-inflammatory cytokines (TNFα, IL-6, IL-1ß, and NF-κB) and increased the expression of anti-inflammatory cytokines (IL-10 and TGF-ß1). In vivo, the administration of GSPE significantly reduced high-fat diet-induced increase of serum CHOL, TG, and HDL, but increased LDL content. GSPE treatment for 3 h increased expression of ATGL and LPL, and significantly decreased the expression of HFD-fed-induced SREBP-1c, ACC, FAS, PPARγ, PPARα, and H-FABP. GSPE treatment for 3 h also significantly decreased the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1ß) and increased the expression of the anti-inflammatory cytokine IL-10. The expression levels of the lipogenic miRNAs, miR-33, and miR-122, were suppressed both in vivo and in vitro by GSPE. In summary, GSPE had hypolipidemic and potential anti-inflammatory effects in the liver, potentially mediated by miR-33 and miR-122.


Assuntos
Carpas , Extrato de Sementes de Uva/química , Inflamação/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Extratos Vegetais/farmacologia , Proantocianidinas/química , Animais , Hepatócitos/efeitos dos fármacos , Inflamação/induzido quimicamente , Ácido Oleico/toxicidade , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA