Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 11(19)2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36231074

RESUMO

Background: Retinal ischemia-reperfusion (I/R) injury often results in intractable visual impairments. The survival of retinal capillary endothelial cells is crucial for the treatment of retinal I/R injury. How to protect retinal endothelia from damage is a challenging work. Withaferin A, a small molecule derived from plants, has antibacterial and anti-inflammatory effects and has been used for about millennia in traditional medicine. The present study aimed to investigate the potential protective effect of withaferin A on retinal I/R injury. Methods: The drug-likeness of withaferin A was evaluated by the SwissADME web tool. The potential protective effect of withaferin A on the I/R-induced injury of human retinal microvascular endothelial cells (HRMECs) was investigated using multiple approaches. RNA sequencing was performed and associated mechanistic signaling pathways were analyzed based on the Kyoto Encyclopedia of Genes and Genomes data. The analytical results of RNA sequencing data were further validated by in vitro and in vivo experiments. Results: Withaferin A reduced the I/R injury-induced apoptotic death of HRMECs in vitro with a good drug-like property. RNA sequencing and experimental validation results indicated that withaferin A increased the production of the crucial antioxidant molecules heme oxygenase 1 (HO-1) and peroxiredoxin 1 (Prdx-1) during I/R. In addition, withaferin A activated the Akt signaling pathway and increased the expression of HO-1 and Prdx-1, thereby exerting an antioxidant effect, attenuated the retinal I/R injury, and decreased the apoptosis of HRMECs. The blockade of Akt completely abolished the effects of withaferin A. Conclusions: The study identified for the first time that withaferin A can protect against the I/R-induced apoptosis of human microvascular retinal endothelial cells via increasing the production of the antioxidants Prdx-1 and HO-1. Results suggest that withaferin A is a promising drug candidate for the treatment of retinal I/R injury.


Assuntos
Heme Oxigenase-1 , Traumatismo por Reperfusão , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Vitanolídeos
2.
BMC Complement Med Ther ; 22(1): 177, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780093

RESUMO

BACKGROUND: As a traditional herbal medicine, Dracaena angustifolia Roxb has been used as an anti-inflammatory agent by the Li people in Hainan, China. In preliminary phytochemical studies conducted in our lab, its fractions were found to inhibit α-glucosidase in vitro, indicating a potential for alleviating glucose dysregulation. METHODS: Through in vitro enzymatic assays, the abilities of the separated components to affect α-glucosidase and α-amylase were evaluated. By establishing concentration gradients and generating Lineweaver-Burk plots, the corresponding inhibition modes together with kinetic parameters were assessed. Following the evaluation of the outcomes of their combination with acarbose, computational docking and molecular dynamic simulations were carried out to analyse the interaction mechanisms and perform virtual screening against human enzymes. RESULTS: Compared with acarbose, 7 compounds, including flavonoid derivatives, amides and aromatic derivatives, with higher α-glucosidase inhibitory efficiencies were confirmed. It was found that those competitive/mixed candidates and acarbose interacted synergistically or additively on α-glucosidase. Moreover, 3 of them were able to inhibit α-amylase in mixed mode, and additive effects were observed in combination with acarbose. Through in silico docking, it was found that the active site residues as well as adjacent residues were involved in α-glucosidase and α-amylase binding, which were mainly achieved through hydrogen bonding. Among those dual-function flavonoids, Compound 9 was predicted to be a considerable inhibitor of human enzymes, as the formation of ligand-enzyme complexes was mediated by the residues responsible for substrate recognition and catalysis, the stabilities of which were reiterated by molecular dynamics simulations. CONCLUSION: Despite their mild effects on α-amylase, considerable α-glucosidase inhibitory efficiencies and potential synergy with acarbose were exhibited by these natural candidates. Furthermore, a stable ligand, human α-glucosidase, was predicted by the performed simulations, which provided useful information for the application of Dracaena angustifolia Roxb in diabetes treatment.


Assuntos
Dracaena , alfa-Amilases , alfa-Glucosidases , Acarbose/química , Acarbose/farmacologia , Dracaena/química , Dracaena/metabolismo , Flavonoides/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Ligantes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA