Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169371, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104809

RESUMO

The constraint of phosphorus (P) fixation on crop production in alkaline calcareous soils can be alleviated by applying bioinoculants. However, the impact of bacterial inoculants on this process remains inadequately understood. Here, a field study was conducted to investigate the effect of a high-concentration, cost-effective, and slow-release granular bacterial inoculant (GBI) on maize (Zea mays L.) plant growth. Additionally, we explored the effects of GBI on rhizosphere soil aggregate physicochemical properties, rhizosphere soil P fraction, and microbial communities within aggregates. The outcomes showed a considerable improvement in plant growth and P uptake upon application of the GBI. The application of GBI significantly enhanced the AP, phoD gene abundance, alkaline phosphatase activity, inorganic P fractions, and organic P fractions in large macroaggregates. Furthermore, GBI impacted soil aggregate fractionation, leading to substantial alterations in the composition of fungal and bacterial communities. Notably, key microbial taxa involved in P-cycling, such as Saccharimonadales and Mortierella, exhibited enrichment in the rhizosphere soil of plants treated with GBI. Overall, our study provides valuable insight into the impact of GBI application on microbial distributions and P fractions within aggregates of alkaline calcareous soils, crucial for fostering healthy root development and optimal crop growth potential. Subsequent research endeavors should delve into exploring the effects of diverse GBIs and specific aggregate types on P fraction and community composition across various soil profiles.


Assuntos
Inoculantes Agrícolas , Microbiota , Solo/química , Zea mays , Rizosfera , Fósforo , Microbiologia do Solo
2.
Sci Rep ; 13(1): 12351, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524857

RESUMO

Triple-negative breast cancer (TNBC), a highly aggressive and heterogeneous subtype of breast cancer, lacks effective treatment options. Sophora flavescens Aiton, a Chinese medicinal plant, is often used in traditional Chinese medicine to treat cancer. Matrine (MAT) is an alkaloid extracted from Sophora flavescens. It has good anticancer effects, and thus can be explored as a new therapeutic agent in TNBC research. We performed bioinformatics analysis to analyze the differentially expressed genes between normal breast tissues and TNBC tissues, and comprehensive network pharmacology analyses. The activity and invasion ability of TNBC cells treated with MAT were analyzed. Apoptosis and cell cycle progression were determined using cytometry. We used Monodansylcadaverine (MDC) staining to determine the condition of autophagosomes. Finally, the expression levels of the key target proteins of the PI3K/AKT pathway were determined using western blotting. The proliferation and invasion ability of MDA-MB-231 and MDA-MB-468 can be effectively inhibited by MAT. The results of flow cytometry indicated that MAT arrested the TNBC cell cycle and induced apoptosis. In addition, we confirmed that MAT inhibited the expression of BCL-2 while up-regulating the expression of cleaved caspase-3. Moreover, enhanced intensity of MDC staining and high LC3-II expression were observed, which confirmed that MAT induced autophagy in TNBC cells. Western blotting showed that MAT inhibited the PI3K/AKT pathway and downregulated the expressions of PI3K, AKT, p-AKT, and PGK1. This study provides feasible methods, which include bioinformatics analysis and in vitro experiments, for the identification of compounds with anti-TNBC properties. MAT inhibited the PI3K/AKT signaling pathway, arrested cell cycle, as well as promoted cell apoptosis and autophagy. These experiments provide evidence for the anti-TNBC effect of MAT and identified potential targets against TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Matrinas , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
3.
Front Pharmacol ; 12: 685773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858165

RESUMO

Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.

4.
Plant Dis ; 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34077248

RESUMO

Codonopsis pilosula Franch., also known as Dangshen, is an important medicinal plant in China. It is widely cultivated for a major income of local farmers in Dingxi, Gansu Province. Its dried roots have the effects of supplementing vital energy, nourishing spleen and lung, enhancing organic immunity, helping depressurization, and improving microcirculation, etc., for humans. In June to October, 2018-2020, root rot disease was observed on C. pilosula with incidences up to 20% in the Dingxi region. We collected ten diseased and healthy plants from Dingxi (35°06'N, 104°29'E, 2206 m a.s.l.) in October 2019. The rotting root tissues were sterilized with 70% ethanol for 30 s and 3% NaOCl for 5 min and placed on potato dextrose agar (PDA) plates incubated at 25℃to isolate the pathogen (Shang et al. 2014). From the similar fungal cultures isolated after 7 days on PGA, isolate B17 was purified for morphological and molecular characterization. Its colony appeared light purple and produced long aerial hyphae. Slightly curved macroconidia (12.3 to 31.7 × 3.1 to 5.1 µm, n=40) and oval-ellipsoid and cylindrical microconidia (6.1 to 9.9 × 2.8 to 4.5 µm, n=30) were observed. The internal transcribed spacer region (ITS) and the translation elongation factor-1 alpha (TEF-1α) gene were amplified using primers ITS1/ITS4 and EF-1/EF-2 (Uwaremwe et al. 2020), respectively. The 489 bp (ITS) and 631 bp (TEF-1α) sequences were deposited in GenBank (Accession No. MN744360 and MN786974, respectively). The ITS sequence had 100% homology to isolate JJF2 (No. MN626452, ITS) (Ma et al. 2020), and the TEF-1α sequence had 100% homology to isolate Fo353 (No. KM065860) (Koyyappurath et al. 2016) of Fusarium oxysporum Schlecht. emend. Snyder & Hansen, which caused root rot of Panax ginseng and Vanilla planifolia, respectively. A phylogenetic tree was generated using the unweighted pair-group method with arithmetic average in the MycoBank database (O'Donnell et al. 2015), which clustered isolate B17 in the F. oxysporum species complex. Twenty 1-year-old plants of C. pilosula were inoculated with were inoculated by dipping the washed roots in a conidial suspension (2 ×106 conidia/ml added with 0.2% Tween 20) for 20 min before transplanted into pots (16 × 16 × 23 cm) with four plants per pot filled with sterilized peat and soil mixture (2:1 v/v) and grown in a greenhouse at 26oC with >70% humidity and 16 h light. Sterilized water added with 0.2% Tween 20 was used as a control. One week after inoculation, the leaves of pathogen-inoculated plants became yellow, and wilting occurred at the leaf tips 18 days later. Some of the inoculated plants died 45 days after inoculation, and the low part of roots had dark brown to black lesions and became rotting. The control plants did not show symptoms. The pathogenicity test was repeated three times with the same fungus isolated from the infected root tissue. To the best of our knowledge, this is the first report that F. oxysporum causes root rot on C. pilosula in China. F. oxysporum is a serious threat to C. pilosula cultivation, and the finding of this pathogen provides a clear target for root rot control.

5.
Front Microbiol ; 12: 798525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35368293

RESUMO

Drought is a major factor limiting the production of the perennial medicinal plant Glycyrrhiza uralensis Fisch. (Fabaceae) in Northwest China. In this study, 1-year-old potted plants were inoculated with the strain Bacillus amyloliquefaciens FZB42, using a gradient of concentrations (CFU), to test for microbe-induced host tolerance to drought condition treatments in a greenhouse experiment. At the concentration of 108 CFU ml-1, FZB42 had significant growth-promoting effect on G. uralensis: the root biomass was 1.52, 0.84, 0.94, and 0.38 times that under normal watering and mild, moderate, and severe drought stress conditions, respectively. Under moderate drought, the positive impact of FZB42 on G. uralensis growth was most pronounced, with both developing axial and lateral roots strongly associated with indoleacetic acid (IAA) accumulation. An untargeted metabolomic analysis and physiological measurements of mature roots revealed that FZB42 improved the antioxidant system of G. uralensis through the accumulation of proline and sucrose, two osmotic adjustment solutes, and by promoting catalase (CAT) activity under moderate drought stress. Furthermore, significantly higher levels of total flavonoids, liquiritin, and glycyrrhizic acid (GA), the pharmacologically active substances of G. uralensis, were found in the roots of inoculated plants after FZB42 inoculation under all imposed drought conditions. The jasmonic acid (JA) content, which is closely related to plant defense responses and secondary metabolites' production, was greatly increased in roots after the bacterial inoculations, indicating that FZB42 activated the JA pathway. Taken together, our results demonstrate that inoculation with FZB42 alleviates the losses in production and pharmacological metabolites of G. uralensis caused by drought via the JA pathway's activation. These results provide a developed prospect of a microbial agent to improve the yield and quality of medical plants in arid and semi-arid regions.

6.
J Sci Food Agric ; 100(15): 5603-5616, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32608519

RESUMO

BACKGROUD: The Lanzhou lily (Lilium davidii var. unicolor) is the only Lilium species that is used for both culinary and medicinal purposes in China. Its bulbs contain various bioactive substances, such as polysaccharides, saponins and colchicine. Lanzhou lily polysaccharides are known to have anti-immunity, anti-tumor and anti-oxidation functions. RESULTS: The present study used a Box-Behnken design to optimize the ultrasound-assisted extraction of Lanzhou lily polysaccharides. Compared to other enzymes, trypsin significantly increased the polysaccharide yields, whereas the protein content of polysaccharides extracted with trypsin was the lowest. Monosaccharide mainly includes glucose (> 50%) and mannose (> 10%). 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity, chelating activity, total antioxidant capacity and hydroxyl radical scavenging activity of Lanzhou lily polysaccharides extracted with trypsin were stronger than those extracted without enzymes (control). Structural characteristics of Lanzhou lily polysaccharides extracted with trypsin and extracted without enzymes were characterized by scanning electron microscopy and nuclear magnetic resonance spectroscopy. When water extracted polysaccharide and trypsin extracted polysaccharide concentrations were 200 µg mL-1 , Raw264.7 proliferation rates were 101.69% and 159.41%, respectively. CONCLUSION: The Lanzhou lily polysaccharide was identified as α-(1 → 6)-d-glucan. Consequently, the effects of both potential antioxidant and proliferative activity of trypsin are significant. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Lilium/química , Extratos Vegetais/química , Polissacarídeos/química , Antioxidantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Técnicas de Reprogramação Celular , China , Glucanos/química , Humanos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Polissacarídeos/farmacologia
7.
World J Microbiol Biotechnol ; 32(6): 95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27116961

RESUMO

Lanzhou lily (Liliumdavidii var. unicolor) is the best edible lily as well as a traditional medicinal plant in China. The microbes associated with plant roots play crucial roles in plant growth and health. However, little is known about the differences of rhizosphere microbes between healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants. The objective of this study was to compare the rhizosphere microbial community and functional diversity of healthy and wilted plants, and to identify potential biocontrol agents with significant effect. Paired end Illumina Mi-Seq sequencing of 16S rRNA and ITS gene amplicons was employed to study the bacterial and fungal communities in the rhizosphere soil of Lanzhou lily plants. BIOLOG technology was adopted to investigate the microbial functional diversity. Our results indicated that there were major differences in the rhizosphere microbial composition and functional diversity of wilted samples compared with healthy samples. Healthy Lanzhou lily plants exhibited lower rhizosphere-associated bacterial diversity than diseased plants, whereas fungi exhibited the opposite trend. The dominant phyla in both the healthy and wilted samples were Proteobacteria and Ascomycota, i.e., 34.45 and 64.01 %, respectively. The microbial functional diversity was suppressed in wilted soil samples. Besides Fusarium, the higher relative abundances of Rhizoctonia, Verticillium, Penicillium, and Ilyonectria (Neonectria) in the wilted samples suggest they may pathogenetic root rot fungi. The high relative abundances of Bacillus in Firmicutes in healthy samples may have significant roles as biological control agents against soilborne pathogens. This is the first study to find evidence of major differences between the microbial communities in the rhizospheric soil of healthy and wilted Lanzhou lily, which may be linked to the health status of plants.


Assuntos
Bactérias/classificação , Fungos/classificação , Lilium/microbiologia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , China , Fungos/genética , Fungos/isolamento & purificação , Lilium/crescimento & desenvolvimento , Microbiota , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA