Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 117917, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38442807

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The adverse effects of Fructus Psoraleae (FP), especially liver injury, have attracted wide attention in recent years. AIM OF THE STUDY: To establish a system to explore potential hepatotoxic targets and the chief culprit of liver injury based on clinical experience, network pharmacological method, molecular docking, and in vitro and in vivo experiments. MATERIALS AND METHODS: Clinical applications and adverse reactions to FP were obtained from public literatures. Components absorbed in the blood were selected as candidates to search for potential active targets (PATs) of FP. Subsequently, potential pharmacological core targets (PPCTs) were screened through the "drug targets-disease targets" network. Non-drug active targets (NPATs) were obtained by subtracting the PPCTs from the PATs. The potential hepatotoxic targets (PHTs) of FP were the intersection targets obtained from Venn analysis using NPATs, hepatotoxic targets, and adverse drug reaction (ADR) targets provided by the databases. Then, potential hepatotoxic components and targets were obtained using the "NPATS-component" network relationship. Molecular docking and in vitro and in vivo hepatotoxicity experiments were performed to verify the targets and related components. RESULTS: Overall, 234 NPATs were acquired from our analysis, and 6 targets were identified as PHTs. Results from molecular docking and in vitro and in vivo experiments showed that angelicin is the leading cause of liver injury in FP, and VKORC1 plays an important role. CONCLUSION: The results indicate that six targets, especially VKORC1, are associated with the PHTs of FP, and angelicin is the leading culprit involved in FP liver injury via inhibition of VKORC1.


Assuntos
Medicamentos de Ervas Chinesas , Furocumarinas , Psoralea , Simulação de Acoplamento Molecular , Fígado , Furocumarinas/efeitos adversos , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia
3.
Heliyon ; 9(4): e15333, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123969

RESUMO

Cheqianzi Decoction (CQD) is a Traditional Chinese Medicine (TCM) formula comprising four herbs and is recorded in the Ancient Materia Medica "Shengji Zonglu". Individually, these four herbs have been shown to reduce uric acid (UA) levels, to treat hyperuricemia (HUA), and alleviate kidney damage. However, the therapeutic efficacy of the CQD and related mechanism are not yet clear. In this study, high performance liquid chromatography (HPLC) analysis confirmed that the contents of the chemical components of the four herbal medicines were in accordance with the provisions of the Chinese Pharmacopoeia. A total of 99 potential targets were identified in the network pharmacology analysis of CQD, indicating its involvement in the regulation of inflammatory and apoptotic signaling pathways, and potential value for treating HUA and alleviating kidney injury. In vivo pharmacodynamic studies showed that compared with the Model group, significantly decreased levels of serum uric acid (SUA), serum creatinine (SCr), blood urea nitrogen (BUN) (all P < 0.05), and inflammatory factors (P < 0.01) were detected in the CQD group. Quantitative real-time PCR and Western blot analyses showed that compared with the Model group, adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) expression in the CQD group was significantly upregulated (P < 0.01) at both the mRNA and protein levels, while mRNA expression of Caspase3 and NOD-like receptor family member 3 (NLRP3) (P < 0.05) and protein expression of NLRP3 (P < 0.01) were significantly downregulated. In conclusion, CQD promotes UA excretion by activating ABCG2, and induces inflammasome NLRP3-mediated reduction in inflammatory and apoptotic factors to achieve renal protection. Thus, our findings indicate the therapeutic potential of CQD in HUA with kidney injury.

4.
J Ethnopharmacol ; 315: 116568, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37217154

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The nephrotoxicity and carcinogenicity induced by traditional Chinese medicines (TCMs) containing aristolochic acids (AAs) and related compound preparations have greatly limited their clinical application. While the toxicity of AA-I and AA-II is relatively clear, there are marked differences in the toxic effects of different types of aristolochic acid analogues (AAAs). Thus, the toxicity of TCMs containing AAAs cannot be evaluated based on the toxicity of a single compound. AIM OF THE STUDY: To systematically investigate the toxicity induced by Zhushalian (ZSL), Madouling (MDL) and Tianxianteng (TXT) as representative TCMs derived from Aristolochia. MATERIALS AND METHODS: AAA contents in ZSL, MDL and TXT were determined using HPLC. Subsequently, mice were treated for 2 weeks with high (H) and low (L) dosages of TCMs containing total AAA contents of 3 mg/kg and 1.5 mg/kg, respectively. Toxicity was evaluated using biochemical and pathological examination and was based on organ indices. Correlations between AAA contents and induced toxicity were analysed using multiple methods. RESULTS: Of the total AAA content, ZSL contained mainly AA-I and AA-II (>90%, of which AA-I accounted for 49.55%). AA-I accounted for 35.45% in MDL. TXT mainly contained AA-IVa (76.84%) and other AAAs accounted for <10%. Short-term toxicity tests indicated that ZSL and high-dose MDL induced obvious renal interstitial fibrosis and gastric injury, whereas TXT (high and low dosages) caused only slight toxicity. Correlation analysis suggested that AA-I might be the critical hazard factor for toxicity. CONCLUSIONS: The toxicity of TCMs containing AAAs cannot be generalised. The toxicity of TXT is relatively low compared with those of ZSL and MDL. The toxicity of Aristolochia depends mainly on the AA-I content; therefore, control of AA-I levels in TCMs and related compound preparations is required to reduce the risk of toxicity associated with the use of Aristolochia herbs in clinical settings.


Assuntos
Aristolochia , Ácidos Aristolóquicos , Medicamentos de Ervas Chinesas , Nefropatias , Animais , Camundongos , Aristolochia/química , Ácidos Aristolóquicos/toxicidade , Nefropatias/induzido quimicamente , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química
5.
Phytomedicine ; 114: 154815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062136

RESUMO

BACKGROUND: The safety of herbs containing aristolochic acids (AAs) has become a widespread concern. Previous reports indicate that AAs are highly nephrotoxic and carcinogenic, although there are more than 170 analogues of aristolochic acid. Not all AAs have the same degree of nephrotoxicity or carcinogenicity. Previous studies have found that aristolochic acid IVa (AA-IVa), the principal component of AAs within members of the Aristolochiaceae family, especially Asarum, a commonly used herb in China, has essentially no significant nephrotoxicity. However, several studies, including ours, have shown that aristolochic acid I (AA-I) is clearly nephrotoxic. PURPOSE: The focus of the study was to elucidate the molecular mechanism responsible for the difference in nephrotoxicity between the AA-I and AA-IVa. STUDY DESIGN/METHOD: Mice were administered with AA-I or AA-IVa for 22 weeks through the oral route, followed by a 50-week recovery time. The kidney tissues of mice were extracted at the end of 22 weeks. Pathological examination and proteomic detection (tandem mass tagging (TMT) and phosphorylated proteomics) were performed on the kidney tissue to investigate the key signaling pathways and targets of AAs-induced renal interstitial fibrosis (RIF). The key signaling pathways and targets were verified by Western blot (WB), siRNA transfection, and luciferase assays. RESULTS: AA-I caused severe nephrotoxicity, high mortality, and extensive RIF. However, the same AA-IVa dosage exhibited almost no nephrotoxicity and does not trigger RIF. The activation of the p38-STAT3-S100A11 signaling pathway and upregulated expression of α smooth muscle actin (α-SMA) and Bcl2-associated agonist of cell death (Bad) proteins could be the molecular mechanism underlying AA-I-induced nephrotoxicity. On the other hand, AA-IVa did not regulate the activation of the p38-STAT3-S100A11 signaling pathway and had relatively little effect on the expression of α-SMA and Bad. Consequently, the difference in the regulation of p38-STAT3-S100A11 pathway, α-SMA, and Bad proteins between AA-I and AA-IVa may be responsible for the divergence in their level of nephrotoxicity. CONCLUSION: This is the first study to reveal the molecular mechanism underlying the difference in nephrotoxicity between AA-I and AA-IVa. Whether STAT3 is activated or not may be the key factor leading to the difference in nephrotoxicity between AA-I and AA-IVa.


Assuntos
Ácidos Aristolóquicos , Nefropatias , Camundongos , Animais , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/farmacologia , Proteômica , Nefropatias/metabolismo , Transdução de Sinais , Fibrose , Rim , Proteínas S100/metabolismo , Proteínas S100/farmacologia
6.
Phytomedicine ; 114: 154805, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054485

RESUMO

BACKGROUND: Multiflorin A (MA) is a potential active ingredient of traditional herbal laxative, Pruni semen, with unusual purgative activity and an unclear mechanism, and inhibiting intestinal glucose absorption is a promising mechanism of novel laxatives. However, this mechanism still lacks support and a description of basic research. PURPOSE: This study aimed to determine the main contribution of MA to the purgative activity of Pruni semen and elucidate the effect intensity, characteristics, site, and mechanism of MA in mice, and determine the novel mechanism of traditional herbal laxatives from the perspective of intestinal glucose absorption. METHODS: We induced diarrhoea in mice by administering Pruni semen and MA, and the defecation behaviour, glucose tolerance, and intestinal metabolism were analysed. The effects of MA and its metabolite on peristalsis of the intestinal smooth muscle were evaluated using an intestinal motility assay in vitro. Intestinal tight junction proteins, aquaporins, and glucose transporters expression were analysed using immunofluorescence; gut microbiota and faecal metabolites were analysed using 16S rRNA and liquid chromatography-mass spectrometry. RESULTS: MA administration (20 mg/kg) induced watery diarrhoea in over half of the experimental mice. The activity of MA in lowering peak postprandial glucose levels was synchronous with purgative action, with the acetyl group being the active moiety. MA was metabolised primarily in the small intestine, where it decreased sodium-glucose cotransporter-1, occludin, and claudin1 expression, then inhibited glucose absorption, resulting in a hyperosmotic environment. MA also increased the aquaporin3 expression to promote water secretion. Unabsorbed glucose reshapes the gut microbiota and their metabolism in the large intestine and the increasing gas and organic acid promoted defecation. After recovery, the intestinal permeability and glucose absorption function returned, and the abundance of probiotics such as Bifidobacterium increased. CONCLUSION: The purgative mechanism of MA involves inhibiting glucose absorption, altering permeability and water channels to promote water secretion in the small intestine, and regulating gut microbiota metabolism in the large intestine. This study is the first systematic experimental study on the purgative effect of MA. Our findings provide new insight into the study of novel purgative mechanisms.


Assuntos
Catárticos , Glucose , Camundongos , Animais , Catárticos/farmacologia , Glucose/farmacologia , Laxantes/farmacologia , RNA Ribossômico 16S , Permeabilidade , Diarreia , Água , Absorção Intestinal
7.
J Ethnopharmacol ; 309: 116357, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36906156

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Adverse reactions to traditional Chinese medicine injections involve pseudo-allergic reactions (PARs). However, in clinical practice, "immediate allergic reactions" and PARs in response to these injections are not often differentiated. AIM OF THE STUDY: This study aimed to clarify the type of reactions produced by Shengmai injections (SMI) and elucidate the possible mechanism. MATERIALS AND METHODS: A mouse model was used to evaluate vascular permeability. Metabolomic and arachidonic acid metabolite (AAM) analyses were performed using UPLC-MS/MS, and the p38 MAPK/cPLA2 pathway was detected by western blotting. RESULTS: The first exposure to intravenous SMI rapidly and dose-dependently induced edema and exudative reactions in the ears and lungs. These reactions were not IgE-dependent and were likely to be PARs. Metabolomic analysis showed that endogenous substances were perturbed in SMI-treated mice, in which the arachidonic acid (AA) metabolic pathway was the most affected. SMI substantially increased the levels of AAMs in lung, including prostaglandins (PGs), leukotrienes (LTs), and hydroxy-eicosatetraenoic acids (HETEs). The p38 MAPK/cPLA2 signaling pathway was activated after a single SMI dose. Inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes reduced exudation and inflammation in the ears and lungs of mice. CONCLUSION: Production of inflammatory factors that increase vascular permeability may result in SMI-induced PARs, and p38 MAPK/cPLA2 signaling pathway and downstream AA metabolic pathway are involved in the reactions.


Assuntos
Hipersensibilidade , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Ácido Araquidônico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sistema de Sinalização das MAP Quinases , Fosfolipases A2 Citosólicas/metabolismo
8.
J Ethnopharmacol ; 307: 116202, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36708883

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asarum heterotropoides f. mandshuricum (Maxim.) Kitag. (AH) is widely used to treat influenza, COVID-19, allergic rhinitis, headache, toothache, rheumatoid arthritis, and peptic ulcer. However, its clinical use is controversial due to the concern of aristolochic acid nephropathy (AAN) caused by its component aristolochic acid analogs (AAs). AIM OF THE STUDY: The chronic toxicity of AH decoction and its main components AA IVa (AA-IVa) and aristolactam I (AL-I) was evaluated in mice. MATERIALS AND METHODS: AAs contents in AH were quantitated by liquid chromatography-mass spectrometry. A parallel design was employed to examine the potential chronic toxicity of AH decoction at doses equivalent to 0.5, 1.6, and 5.0 g/kg AH (approximately 10-100 times the clinical doses for humans) and its major AA components at doses equivalent to that in 5.0 g/kg AH to mice after consecutive daily oral administration for 12 and 24 weeks, and at 32 weeks after withdrawal for 8 weeks. RESULTS: AH crude herb contained 2.18 µg/g of AA-I, 48.49 µg/g of AA-IVa, and 14.0 µg/g of AL-I. AH decoction contained 5.45 µg/g of AA-IVa and 2.71 µg/g of AL-I. None of AA-II and AA-IIIa were detected in AH. After long-term administration of AH decoction and its major components AA-IVa and AL-I, mice showed no signs of illness or body weight changes. In addition, biochemical and pathohistological examinations showed that long-term administration of AH decoction and its major components AA-IVa and AL-I did not alter 1) serum levels of glutamic-pyruvic transaminase, glutamic oxalacetic transaminase, alkaline phosphatase, creatinine, and urea nitrogen, 2) renal tissue mRNA expression of kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin, and 3) pathological morphology in the mouse liver, kidney, stomach, and bladder. CONCLUSIONS: AH has no obvious toxicity to mice and is relatively safe when it is used in the form of decoction. AA-IVa and AL-I, the two major AAs in AH, are not toxic to mice at the dose equivalent to that in the high dose of AH decoction. Considering the limited toxicological data on AH, we recommend that AH decoction medication should not overdose and the duration should not be too long.


Assuntos
Ácidos Aristolóquicos , Asarum , COVID-19 , Humanos , Camundongos , Animais , Asarum/química , COVID-19/metabolismo , Rim/patologia
9.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3581-3588, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850812

RESUMO

When the drug induces the organism to produce a type Ⅰ allergic reaction, the combination of IgE and mast cells results in the degranulation of the mast cells. Release of vasoactive substances, increase in vascular permeability, and exudation of intravascular substances outside the blood vessels. Based on this pathophysiological mechanism, a mouse model that can objectively and quantitatively assess the allergic response to the injection has been established. ICR mice were sensitised by intraperitoneal injection of different doses of OVA once every two days for three times. 14 days after the last sensitization, a combination OVA solution of 4 times the sensitizing dose and Evans blue were injected intravenously into mice for the challenge. Compared with the normal group, OVA 0.625/2.5, 1.25/5, 2.5/10, 5/20 mg·kg~(-1) sensitized and challenged can induce allergic reactions mainly manifested by blue staining of the auricle in mice. Direct injection of OVA intravenously did not cause an auricular blue colouration reaction in mice. The passive cutaneous anaphylaxis reaction in mice was conducted with the aforementioned OVA-sensitized mouse serum, and there were obvious blue spots on the mouse's back. In addition, the content of anti-OVA-IgE in 5 mg·kg~(-1) OVA-sensitized mice was significantly increased. Ears and lungs of mice sensitized to OVA showed evident exudation inflammation. Significantly elevated inflammatory factors(VEGF and IL-10) were also detected in the serum of OVA-sensitized mice. The equivalent dose of OVA caused obvious allergic reactions in both guinea pigs and mice. Compared with nude mice, ICR and BALB/c mice are more sensitive to OVA sensitization. Injections of selected TCMI did not induce type Ⅰ allergic reactions in mice and guinea pigs, but there was a risk of inducing pseu-doallergic reactions in mice. The model is problematic and may well reflect the sensitization effect of allergens. It obtains the benefits of simple operation, accuracy, low cost, easy extension, and high repeatability. It is suitable for predicting and researching for IgE-dependent type Ⅰ allergic reactions.


Assuntos
Hipersensibilidade , Imunoglobulina E , Alérgenos , Animais , Modelos Animais de Doenças , Cobaias , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Ovalbumina
10.
J Food Sci ; 87(3): 1319-1330, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166368

RESUMO

Andrographis paniculata (Burm.f.) Nees (AP) is widely used in most Asian and some Western countries. However, its main effects and underlying pharmacological mechanism have not been thoroughly characterized, and its safety has not been sufficiently investigated. The present study aimed to predict and visualize the potential targets and pathways, clarify the main pharmacological effects, and investigate the toxicological properties of AP extract (APE). First, ingenuity pathway analysis (IPA) was performed to directly predict AP's therapeutic targets and pathways; main pharmacological effects of AP were speculated based on IPA results and confirmed by pharmacodynamics experiments. Rodent toxicity studies were then performed through administration of a single dose of 10 g/kg or daily doses of 2, 1, or 0.5 g/kg for 8 weeks to evaluate the safety of APE, and a similar repeated-dose study was performed using dogs with doses equal to half of the above-mentioned doses. Thus, repeated-dose toxicity studies were performed with both rodents and nonrodents. The IPA analysis and confirmatory pharmacodynamics experiments revealed that the main pharmacological effect of APE was anti-inflammation, which might be achieved by influencing various targets (e.g., AR, AKT, and BAX) and pathways (IL-8). In the single-dose toxicity test, no death or abnormal consequences were observed, and maximum tolerated dose of APE was 10 g/kg. Results from the repeated-dose toxicity tests did not reveal any obvious toxic effects from the repeated daily intragastric administration of APE at 1 g/kg for 8 weeks. In conclusion, APE at a dose of 1 g/kg did not exert any adverse effects, and administration of APE could be beneficial for the inflammatory diseases' treatment. PRACTICAL APPLICATION: Andrographis paniculata (Burm.f.) Nees is a plant that exerts clearing and detoxification effects and is widely used around the world, but a comprehensive analysis of its efficacy and safety is needed.


Assuntos
Andrographis , Andrographis paniculata , Animais , Anti-Inflamatórios/farmacologia , Cães , Extratos Vegetais/toxicidade
11.
Front Pharmacol ; 12: 761593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899315

RESUMO

Asarum (Xixin), which contains analogues of aristolochic acid (AA), is the only species of the genus Aristolochia included in the Chinese Pharmacopoeia 2020. However, the contents and nephrotoxic effects of AA analogs in Asarum (Xixin) and its formulations have not been clarified. An automatic, effective solid phase extraction process and UPLC-MS/MS method were established for the pretreatment and quantitative detection of AA analogues in commercially available traditional Chinese patent medicines. The cytotoxicity and DNA damage induced by five analogues of AA were evaluated by CCK8 using human kidney cells (HK-2) and comet assays. HPLC was used to detect the analogues of AA in Asarum heterotropoides F. Schmidt (Xixin). The results showed that the contents of AA I, AA II, and AA IIIa were below the detection limit, while AA IVa and AL I presented relatively high contents of Asarum heterotropoides F. Schmidt (Xixin), within the range of 66.50-121.03 µg/g and 19.73-43.75 µg/g, respectively. The levels of AA analogues were in the nanogram-per-gram level in the main traditional Chinese patent medicines. AA I and AL I exhibited relatively high cytotoxicity at 48 h in CCK8 assays, while AA II, AA IIIa, and AA IVa showed weak cytotoxicity even at 800-1,000 µM. AA I induced significant pathological alterations and direct DNA damage at 40 mg/kg and 20 mg/kg, respectively. No distinct nephrotoxicity or hepatotoxicity was observed in mice treated with AA II, AA IIIa, AA IVa, or AL I at 40 mg/kg in this study. Consumption of Asarum heterotropoides F. Schmidt (Xixin) with controlled doses and periods is relatively safe as the contents of AA analogues in Asarum heterotropoides F. Schmidt (Xixin) and its formulations were far below those causing acute toxicity in this study. But, the long-term toxicity of Asarum heterotropoides F. Schmidt (Xixin) still needs further study.

12.
Pharm Biol ; 58(1): 581-589, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32615844

RESUMO

Context: Shuxuening injection (SXNI), derived from the leaf of Ginkgo biloba L. (Ginkgoaceae), is widely used to treat cardio-cerebral vascular system related disease due to the efficacy of dilating the blood vessels and improving the function of microcirculation. Nevertheless, SXNI induces immediate hypersensitivity reactions in clinics and the molecular mechanisms are unknown.Objective: The present study investigates the molecular mechanism of SXNI mediated hypersensitivity reactions.Materials and methods: Naive male ICR mice (n = 10) were administered (i.v.) with negative control combined with Evans blue (EB) (CTL-EB), SXNI (14 or 70 mg/kg) combined with EB (SXNI/1-EB or SXNI/4-EB), vascular leakage was evaluated, ears and lungs were collected for histopathological analysis. In vitro, TSC1 was knockdown in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with SXNI, and the alterations of endothelial cell permeability were observed. Rapamycin (mTOR inbibitor) was used to investigate SXNI-induced hypersensitivity reactions both in mice and HUVECs.Results: SXNI (70 mg/kg) induced vascular leakage in mice. Slight oedema and microvascular dilation in the ears, and broaden of alveolar septal and monocyte infiltration in the lungs were observed in SXNI (70 mg/kg) treated mice. mTOR inhibitor alleviates SXNI mediated vascular endothelial hyperpermeability both in vitro and in vivo.Discussion and conclusions: SXNI stimulates pseudo-allergic reactions through hyperactivation of mTOR signalling pathway. Our work provides the new molecular mechanism of drug related pseudo-allergic reactions, and a potential drug to prevent and treat SXNI mediated hypersensitivity reactions.


Assuntos
Medicamentos de Ervas Chinesas/toxicidade , Ginkgo biloba , Hipersensibilidade/metabolismo , Extratos Vegetais/toxicidade , Folhas de Planta , Serina-Treonina Quinases TOR/metabolismo , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Edema/induzido quimicamente , Edema/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/isolamento & purificação
13.
Zhongguo Zhong Yao Za Zhi ; 45(6): 1263-1271, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32281335

RESUMO

The outbreak caused by 2019 novel coronavirus(2019-nCoV) is still spreading, posing a great threat to the safety and health of general population. However, there have not been any effective drugs for treatment, with symptomatic treatment and prevention prevailing. The treatment plans of severe acute respiratory syndrome(SARS) and Middle East respiratory syndrome(MERS) are often used for reference in clinic. The advantages of traditional Chinese medicine(TCM) in treating SARS and MERS are that it can intervene and block the progression of disease in early stage, significantly reduce symptoms, shorten the treatment duration of patients, reduce complications and side effects caused by hormone therapy. The coronavirus disease 2019(COVID-19) belongs to the category of TCM epidemic diseases. Chinese patent medicines and prescriptions in medical observation and clinical treatment were recommended in the "pneumonia diagnosis and treatment plan for new coronavirus infection"(trial version fifth) of the National Health Commission of the People's Republic of China. Qingfei Paidu Decotion was recommended for the treatment of COVID-19 by the National Health Commission of the People's Republic of China and National Administration of Traditional Chinese Medicine. TCM shows good clinical efficacy and great potential in the treatment of COVID-19. Previous studies of TCM have shown broad-spectrum antiviral activity, providing a variety of sources for the discovery of new antiviral drugs. In this paper, we reviewed traditional Chinese medicines and its active ingredients in the hope of bringing novel inspirations to the drug screening and clinical treatment for COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Pneumonia Viral/tratamento farmacológico , Betacoronavirus , COVID-19 , China , Humanos , Pandemias , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
14.
Pharm Biol ; 58(1): 98-106, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31957525

RESUMO

Context: Aristolochia manshuriensis Kom (Aristolochiaceae) (AMK) is known for toxicity and mutagenicity.Objective: The tumorigenic role of AMK has yet to be understood.Materials and methods: AMK extracts were extracted from root crude drug. SD (Sprague Dawley) rats underwent gavage with AMK (0.92 g/kg) every other day for 10 (AMK-10) or 20 (AMK-20) weeks. Stomach samples were gathered for histopathological evaluation, microarray and mRNA analysis.Results: The gastric weight to body weight ratio (GW/BW) is 1.7 in the AMK-10 cohort, and 1.8 in AMK-20 cohort compared to control (CTL) cohort. Liver function was damaged in AMK-10 and AMK-20 rats compared to CTL rats. There were no significant changes of CRE (creatinine) in AMK-10 and AMK-20 rats. Histopathological analysis revealed that rats developed dysplasia in the forestomach in AMK-10 rats, and became gastric carcinoma in AMK-20 rats. Genes including Mapk13, Nme1, Gsta4, Gstm1, Jun, Mgst2, Ggt6, Gpx2, Gpx8, Calml3, Rasgrp2, Cd44, Gsr, Dgkb, Rras, and Amt were found to be critical in AMK-10 and AMK-20 rats. Pik3cb, Plcb3, Tp53, Hras, Myc, Src, Akt1, Gnai3, and Fgfr3 worked in AMK-10 rats, and PDE2a and PDE3a played a pivotal role in AMK-20 rats.Discussion and conclusions: AMK induced benign or malignant gastric tumours depends on the period of AMK administration. Genes including Mapk13, Nme1, Gsta4, Gstm1, Jun, Mgst2, Ggt6, Gpx2, Gpx8, Calml3, Rasgrp2, Cd44, Gsr, Dgkb, Rras, Amt, Pik3cb, Plcb3, Tp53, Hras, Myc, Src, Akt1, Gnai3, Fgfr3, PDE2a, and PDE3a were found to be critical in aristolochic acid-induced gastric tumour process.


Assuntos
Aristolochia/química , Extratos Vegetais/toxicidade , Neoplasias Gástricas/induzido quimicamente , Animais , Ácidos Aristolóquicos/isolamento & purificação , Ácidos Aristolóquicos/toxicidade , Análise em Microsséries , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Tempo
15.
J Ethnopharmacol ; 247: 111576, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30385423

RESUMO

AIM OF THE STUDY: Because the toxicity and efficacy of arsenic is closely related to its chemical species, we conducted examinations of arsenic species accumulation and distribution in the rat body after one-time and 30-day realgar administration and then elucidated the probable roles of different arsenic species in the short-term toxicity of realgar. MATERIALS AND METHODS: According to ICH M3 guidelines for non-clinical repeated dose toxicity studies and OECD Test guideline TG407 "Repeated Dose 28-Day oral Toxicity Study in Rodents, the doses of realgar set were 10.6 mg/kg, 40.5 mg/kg and 170 mg/kg. Rats were orally administered with realgar for one-tme and 30 days, respectively. Thereafter, biological samples (plasma, urine, liver, kidney, and brain) were obtained from rats and analyzed using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) to determine realgar metabolism, arsenic species accumulation and distribution. Additionally, the toxicity of realgar in rats was evaluated. RESULTS: The absorption, distribution and elimination half-life of total arsenic species in realgar were 3.33 hs, 16.08 hs and 24.65 hs, respectively. After 30 days of oral administration of realgar in rats, no significant drug-related toxicity occurred in the rats. Dimethylarsenic acid (DMA) is the most abundant arsenic species. The DMA contents of the liver and kidney of the high-dose realgar group were approximately 40-fold and 50-fold higher than those in the corresponding tissues of the control group, respectively. The arsenic species (III) was mainly detected in the liver and its content was about 40-fold higher than that of the control group. MMA was mainly detected in rat kidney, and the MMA content of the realgar treatment group was more than 2000 times higher than that of the control group. CONCLUSIONS: Arsenic is rapidly absorbed and distributed over the liver, kidneys and brain, and the distribution and elimination of arsenic in the blood is slow. The realgar doses corresponded to human equivalent doses (HED) of 1.7, 6.4 and 27.2 mg/kg, respectively. Considering that humans are 10 times more sensitive than animals, the realgar dose is equivalent to 0.17, 0.64 and 2.7 mg/kg HED. It can be considered that if patients take no more than 2.7 mg/kg realgar for 2 weeks, there will be no adverse reactions.


Assuntos
Arsenicais/farmacocinética , Sulfetos/farmacocinética , Administração Oral , Animais , Arsenicais/administração & dosagem , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/toxicidade , Feminino , Absorção Gastrointestinal , Meia-Vida , Rim/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Ratos , Sulfetos/administração & dosagem , Sulfetos/toxicidade , Distribuição Tecidual , Testes de Toxicidade Aguda
16.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842335

RESUMO

In recent years, hypersensitivity reactions to the Shuanghuanglian injection have attracted broad attention. However, the componential chief culprits inducing the reactions and the underlying mechanisms involved have not been completely defined. In this study, we used a combination of approaches based on the mouse model, human umbilical vein endothelial cell monolayer, real-time cellular monitoring, immunoblot analysis, pharmacological inhibition, and molecular docking. We demonstrated that forsythoside A and forsythoside B contributed to Shuanghuanglian injection-induced pseudoallergic reactions through activation of the RhoA/ROCK signaling pathway. Forsythoside A and forsythoside B could trigger dose-dependent vascular leakage in mice. Moreover, forsythoside A and forsythoside B slightly elicited mast cell degranulation. Correspondingly, treatment with forsythoside A and forsythoside B disrupted the endothelial barrier and augmented the expression of GTP-RhoA, p-MYPT1, and p-MLC2 in a concentration-dependent manner. Additionally, the ROCK inhibitor effectively alleviated forsythoside A/forsythoside B-induced hyperpermeability in both the endothelial cells and mice. Similar responses were not observed in the forsythoside E-treated animals and cells. These differences may be related to the potential of the tested compounds to react with RhoA-GTPγS and form stable interactions. This study innovatively revealed that some forsythosides may cause vascular leakage, and therefore, limiting their contents in injections should be considered.


Assuntos
Ácidos Cafeicos/farmacologia , Medicamentos de Ervas Chinesas/química , Glucosídeos/farmacologia , Glicosídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Ácidos Cafeicos/química , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/imunologia , Degranulação Celular , Medicamentos de Ervas Chinesas/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucosídeos/química , Glicosídeos/química , Humanos , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Quinases Associadas a rho/química , Proteína rhoA de Ligação ao GTP/química
17.
Zhongguo Zhong Yao Za Zhi ; 43(22): 4391-4396, 2018 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-30593229

RESUMO

Animal medicine injection is an important part of traditional Chinese medicine (TCM) injections. All or part of animals with a significant curative effect and little side reactions as raw materials as well as modern technology are used to produce traditional Chinese medicine injections with a reliable and rapid drug efficacy and high bioavailability. Due to the complex composition of traditional Chinese medicine injections, imperfect quality standards, and unreasonable clinical use, the incidence of adverse reactions of traditional Chinese medicine injections has been significantly higher than that of traditional Chinese medicine for oral use. Animal medicine injections contain rich protein and fat, and heteroproteins are the main sensitization source in animal medicine injections. At present, the adverse reactions of animal medicine injections are mainly manifested in the anaphylaxis-like reactions at skin, mucous membranes and organ systems. The adverse reactions that occur during the first medication are more common. Specific causes for allergic-like adverse reactions in animal injections and related substances in traditional Chinese medicine injections made of animals that induce allergies or anaphylactoid reactions are currently not specifically reported. This article reviews the current adverse reactions of animal TCM injections, allergies and pseudoallergic reactions of animal TCM injections, the pharmacokinetics of animal TCM injections, and the combined use of drugs, in order to improve the quality standards of Chinese medicine injections for animals and provide reference for further safety related research.


Assuntos
Anafilaxia , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Administração Oral , Animais , Injeções , Tecnologia
18.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2789-2795, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30111033

RESUMO

In this study, different batches of Xingnaojing injection products were first selected for pseudoallergic mice test, and the results showed that after injection of 6.6-fold clinical dose Xingnaojing injection, the mice showed a slight pseudoallergic reaction, while other mice injected with other batches of injections showed no obvious pseudoallergic reaction. Therefore, it is preliminarily believed that this mice model can effectively indicate the risk of pseudoallergic reactions in the clinical application of Xingnaojing injections. In addition, by changing some of the processes, a high concentration of Xingnaojing injection was prepared for mice pseudoallergic test and guinea pig systemic allergy test. The results showed no significant type Ⅰ allergic reaction in guinea pigs. Mild pseudoallergic reactions occurred in mice after a 6.6-fold clinical dose injection. Therefore, it is considered that for sensitive or idiosyncratic people, the concentration of certain chemical components in Xingnaojing injection will increase after entering the body, which may increase the risk of pseudoallergic reaction. However, due to the limitations of test models, the risk of Xingnaojing injection to induce allergic reactions cannot be ruled out. Finally, by increasing the content of borneol and Tween and (or) sodium chloride in Xingnnaojing Injection and testing its pseudoallergic reactions, the results showed that the combination of these three ingredients may produce new trace sensitization substance and induce pseudoallergic reactions.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Animais , Cobaias , Camundongos
19.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2777-2783, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30111031

RESUMO

The aim of this study was to investigate the renal toxicity of rhubarb and its mechanism. The SD rats were randomly divided into three groups: normal group and two rhubarb extract groups (16, 2 g·kg⁻¹). According to the dose conversion method between human and animal, rhubarb 16 g·kg⁻¹ and 2 g·kg⁻¹ were equivalent to 10 times and 1.25 times of human clinical dose respectively. Rhubarb extract was administered by a gastric gavage to rats once daily for 30 days. Serum urea nitrogen (BUN), creatinine (CRE) and urine KIM-1, NGAL and renal morphology were analyzed. The expressions of OAT1, OAT3 and clusterin mRNA in kidney were measured. The results showed that the low dose of rhubarb had no obvious renal toxicity. The high dose group showed mild and moderate renal injury and a down-regulation of clusterin mRNA expression in the kidney tissue. The renal toxicity in male animals was heavier than that in female animals. There was no significant change in blood BUN and CRE in the high dose group. But urine NGAL level of the high dose group increased by 51.53% compared with normal group, of which male animals increased more significantly (P<0.05, compared with the normal group). The expressions of renal OAT1 and OAT3 mRNA in the low dose group were obviously higher than that in the normal group. The results indicated that the high dose of rhubarb could cause the renal toxicity. The dosage should be controlled reasonably in the clinical use. OAT1 and OAT3 mRNA related to anionic transport in kidney tissue played a compensatory protective role in rhubarb-induced renal injury. But the compensatory effect is relatively weak at the high dose level. In addition, routine renal function indicators BUN and CRE had limitation for monitoring the kidney toxicity of rhubarb. It is suggested that urine NGAL detection might be helpful for monitoring the renal toxicity of rhubarb.


Assuntos
Rheum , Animais , Nitrogênio da Ureia Sanguínea , Creatinina , Feminino , Humanos , Rim , Masculino , Ratos , Ratos Sprague-Dawley
20.
J Ethnopharmacol ; 225: 81-89, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30008395

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochia manshuriensis Kom (AMK), belonging to the Aristolochia family, is traditionally used in China to remove heart fire, promote dieresis, restore menstruation, and enhance milk secretion. The active constitutes of AMK are aristolochic acids (AAs, I and II) that are reported to cause serious side effects including nephrotoxicity and carcinogenicity. AIM OF THE STUDY: The tumorigenic role of AMK is far to be understood. We analyzed the toxicity reactions after long-term exposure of AMK in rats. MATERIALS AND METHODS: Sprague-Dawley rats underwent gavage with AMK doses of 51 mg/kg (AMK-1), 253 mg/kg (AMK-2), 508 mg/kg (AMK-3), 1029 mg/kg (AMK-4) or AAs of 15 mg/kg (AAs), and then sacrificed at the 6th, 10th, 14th, 18th, 22th, 26th and 30th weeks. Endpoint measurements included clinical observations, body weights, blood biochemistry, haematology and histomorphological observations. RESULTS: Body weight decreased after AMK or AAs treatment in rats. AMK destroyed renal function, and induced anemia in rats. AMK caused kidney, stomach, bladder and subcutaneous tumors in rats. In addition, primary hepatic carcinoma was not observed in rats. CONCLUSIONS: AMK had significant toxic effects in rats with regard to decreased body weight, diminished renal function, increased anemia and tumor incidence. Kidney, stomach, bladder and subcutaneous tissue are carcinogenic target organs of AMK or AAs, however liver is no- carcinogenic target organ of AMK or AAs in rats. AMK is carcinogenic in rats, and not be safe for humans.


Assuntos
Aristolochia , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Extratos Vegetais/toxicidade , Administração Oral , Anemia/induzido quimicamente , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Neoplasias/patologia , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Estômago/efeitos dos fármacos , Estômago/patologia , Testes de Toxicidade Crônica , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA