Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185392

RESUMO

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Assuntos
Amônia , Gastrópodes , Animais , Dieta , Antioxidantes/metabolismo , Gastrópodes/metabolismo , Imunidade Inata , Expressão Gênica , Músculos/metabolismo , Superóxido Dismutase/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Xantofilas
2.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104697

RESUMO

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Assuntos
Quitosana , Microbioma Gastrointestinal , Animais , Astacoidea , Quitosana/farmacologia , Dieta , Suplementos Nutricionais/análise , Superóxido Dismutase/metabolismo , Oligossacarídeos/farmacologia , Imunidade Inata , Ração Animal/análise
3.
Fish Shellfish Immunol ; 127: 280-294, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752371

RESUMO

This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1ß, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.


Assuntos
Asteraceae , Ciclídeos , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções Estreptocócicas , Tilápia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Lipídeos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Tilápia/metabolismo
4.
Fish Shellfish Immunol ; 119: 524-532, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34737131

RESUMO

This study was performed to investigate the effects of dietary trehalose on growth, muscle composition, non-specific immune responses, gene expression and desiccation resistance of juvenile red claw crayfish (Cherax quadricarinatus). A total of 540 (body weight of 0.41 ± 0.05) crayfish were randomly divided into six groups for a feeding experiment. Six diets with trehalose levels at 0 (Diet 1), 1 (Diet 2), 2 (Diet 3), 5 (Diet 4), 10 (Diet 5) and 15 (Diet 6) g kg-1 were prepared to feed juvenile red claw crayfish for 8 weeks. The results showed that the weight gain rate (WGR) and specific growth rate (SGR) of crayfish in Diet 4, Diet 5 and Diet 6 groups were significantly improved compared with the control group (Diet 1). Muscle crude protein contents of crayfish fed Diet 4, Diet 5 and Diet 6 were significantly higher than those of the control group. The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) in hepatopancreas and hemolymph of crayfish for Diet 4, Diet 5, and Diet 6 groups were significantly increased while malondialdehyde (MDA) content was significantly reduced when compared with the control. The total antioxidant capacity (T-AOC), catalase (CAT) and glutathione peroxidase (GPx) activities in the hepatopancreas and hemolymph of crayfish fed Diet 5 and Diet 6 were significantly higher than those in the control group. However, acid phosphatase (ACP) activity was not significantly different among all experimental groups. The hepatopancreas and intestine trehalose contents of crayfish showed an upward trend with the increase of dietary trehalose levels. Compared with the control group, supplementation of 5-15 g kg-1 trehalose in the feed up-regulated the expression levels of GPx, C-type lysozyme (C-LZM), antilipolysacchride factor (ALF), facilitated trehalose transporter homolog isoform X2 (Tret1-2) and facilitated trehalose transporter isoform X4 (Tret1-4) mRNA. In addition, supplementation of 5-15 g kg-1 trehalose in the feed could improve the survival rate of red claw crayfish under desiccation stress. These results suggested that supplementation of 5-15 g kg-1 trehalose in feed could significantly improve the growth performance, muscle protein, non-specific immunity and desiccation resistance of juvenile red claw crayfish.


Assuntos
Astacoidea , Trealose , Ração Animal/análise , Animais , Antioxidantes , Astacoidea/genética , Dessecação , Dieta/veterinária , Suplementos Nutricionais/análise , Expressão Gênica , Imunidade Inata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA