Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; : 271678X241237159, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420850

RESUMO

Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.

2.
Int Immunopharmacol ; 120: 110308, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37192551

RESUMO

Inflammation plays a crucial role in the physical response to danger signals, the elimination of toxic stimuli, and the restoration of homeostasis. However, dysregulated inflammatory responses lead to tissue damage, and chronic inflammation can disrupt osteogenic-osteoclastic homeostasis, ultimately leading to bone loss. Maresin1 (MaR1), a member of the specialized pro-resolving mediators (SPMs) family, has been found to possess significant anti-inflammatory, anti-allergic, pro-hemolytic, pro-healing, and pain-relieving properties. MaR1 is synthesized by macrophages (Mφs) and omega-3 fatty acids, and it may have the potential to promote bone homeostasis and treat inflammatory bone diseases. MaR1 has been found to stimulate osteoblast proliferation through leucine-rich repeat G protein-coupled receptor 6 (LGR6). It also activates Mφ phagocytosis and M2-type polarization, which helps to control the immune system. MaR1 can regulate T cells to exert anti-inflammatory effects and inhibit neutrophil infiltration and recruitment. In addition, MaR1 is involved in antioxidant signaling, including nuclear factor erythroid 2-related factor 2 (NRF2). It has also been found to promote the autophagic behavior of periodontal ligament stem cells, stimulate Mφs against pathogenic bacteria, and regulate tissue regeneration and repair. In summary, this review provides new information and a comprehensive overview of the critical roles of MaR1 in inflammatory bone diseases, indicating its potential as a therapeutic approach for managing skeletal metabolism and inflammatory bone diseases.


Assuntos
Doenças Ósseas , Inflamação , Humanos , Inflamação/tratamento farmacológico , Macrófagos , Fagocitose , Anti-Inflamatórios/farmacologia , Doenças Ósseas/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/metabolismo
3.
Int J Toxicol ; 41(1): 5-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045746

RESUMO

The objective of this study was to investigate the effect of liquiritigenin (LQ) on breast cancer (BC) and its mechanism. After BC cell lines and normal mammary epithelial cells were cultured with LQ, CCK-8, and Scratch, Transwell assays and flow cytometry were applied to test the effect of LQ on cell proliferation, migration, invasion, and apoptosis. The effect of LQ on the expression of microRNA-383-5p (miR-383-5p) and connective tissue growth factor (CTGF) was measured by qRT-PCR and Western blotting. Bioinformatics prediction was used to evaluate the binding relationship between miR-383-5p and CTGF, which was verified by dual-luciferase reporter assay. After miR-383-5p and/or CTGF expression was upregulated through cell transfection, the relationship between miR-383-5p and CTGF, as well as their effects on BC, was further assessed. The results showed that LQ can significantly inhibit CTGF expression and the proliferative, migratory, and invasive abilities of BC cells, while facilitating apoptosis of BC cells and miR-383-5p expression. The inhibiting effect of LQ was dose-dependently enhanced in BC cells. Dual-luciferase reporter assay verified that miR-383-5p targeted CTGF. CTGF expression was inversely regulated by miR-383-5p. CTGF upregulation repressed the suppressive effect of miR-385-5p on BC cell development. In conclusion, LQ can inhibit CTGF expression by upregulating miR-383-5p, thereby inhibiting proliferative, migratory, and invasive abilities and promoting apoptosis of BC cells.


Assuntos
Neoplasias da Mama , Fator de Crescimento do Tecido Conjuntivo , Flavanonas , MicroRNAs , Neoplasias da Mama/genética , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Regulação para Cima/efeitos dos fármacos
4.
Environ Sci Pollut Res Int ; 28(34): 46877-46893, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34254241

RESUMO

With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA