Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534249

RESUMO

Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings.


Assuntos
Técnicas Biossensoriais , Nanofios , Ácidos Nucleicos , Silício/química , Transistores Eletrônicos , DNA , Técnicas Biossensoriais/métodos , Nanofios/química
2.
ACS Appl Mater Interfaces ; 14(5): 6967-6976, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35076195

RESUMO

Nonvolatile logic devices are crucial for the development of logic-in-memory (LiM) technology to build the next-generation non-von Neumann computing architecture. Ferroelectric field-effect transistors (Fe FET) are one of the most promising candidates for LiMs because of high compatibility with mainstream silicon-based complementary metal-oxide semiconductor processes, nonvolatile memory, and low power consumption. However, because of the unipolar characteristics of a Fe FET, a nonlinear XOR or XNOR logic gate function is difficult to realize with a single device. In addition, because single Fe polarization switch modulation is available in the devices, a reconfigurable logic gate usually needs multiple devices to construct and realize fewer logic functions. Here, we introduced polarization-switching (PS) and charge-trapping (CT) effects in a single Fe FET and fabricated a multi-field-effect transistor with bipolar-like characteristics based on advanced 10 nm node fin field-effect transistors (PS-CT FinFET) with 9 nm thick Hf0.5Zr0.5O2 films. The special hybrid effects of charge-trapping and polarization-switching enabled eight Boolean logic functions with a single PS-CT FinFET and 16 Boolean logic functions with two complementary PS-CT FinFETs were obtained with three operations. Furthermore, reconfigurable full 1 bit adder and subtractor functions were demonstrated by connecting only two n-type and two p-type PS-CT FinFET devices, indicating that the technology was promising for LiM applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA