Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 410: 110442, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37984213

RESUMO

The raw and processed roots of Polygonum multiflorum Thunb is a popular traditional Chinese medicine. However, Polygoni Multiflori Radix is easily contaminated by toxigenic fungi and mycotoxins during harvesting, processing, and transportation, thereby posing a health risk for consumers. This study aims to investigate the presence of fungi on the surface of raw and processed Polygoni Multiflori Radix collected from four producing areas using high-throughput sequencing. Results showed that the phyla Ascomycota and Basidiomycota, the genera Xeromyces, Cystofilobasidium, Eurotium, and Aspergillus were the dominant fungus, and significant differences are presented in four areas and two processed products. Three potential mycotoxin-producing fungi were detected, namely Trichosporon cutaneum, Aspergillus restrictus, and Fusarium oxysporum. The α-diversity and network complexity showed significant differences in four areas. Chao 1 and Shannon were highest in Yunnan (YN), then incrementally decreased from SC (Sichuan) to AH (Anhui) and GD (Guangdong) areas. Meanwhile, α-diversity was also strongly influenced by processing. Chao 1 and Shannon indices were higher in the raw group, however, the network complexity and connectivity were higher in the processed group. In conclusion, the assembly and network of the surface microbiome on Polygoni Multiflori Radix were influenced by sampling location and processing. This work provides details on the surface microbiome of Polygoni Multiflori Radix samples, which could ensure the drug and consumers' safety.


Assuntos
Medicamentos de Ervas Chinesas , Micotoxinas , Polygonum , China , Medicina Tradicional Chinesa , Raízes de Plantas
2.
Front Microbiol ; 14: 1188986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547678

RESUMO

Introduction: Arecae semen, which is derived from the dried ripe seed of Areca catechu L., has been commonly used as one of the major traditional Chinese medicines (TCMs). Three types of crude herbal preparations, namely, raw Arecae semen (AS), Arecae semen tostum (SAS), and Arecae semen carbonisata (FAS), are available for different clinical applications in TCMs. Although aflatoxin contamination in Arecae semen has been reported preliminarily, only a few studies have been conducted on fungal contamination. Methods: In this study, the presence of fungi on the surface of three Arecae semen (AS, SAS, and FAS) that collected from four provinces were investigated using high-throughput sequencing and internal transcribed spacer 2. Results: Results showed that the phyla Ascomycota (75.45%) and Basidiomycota (14.29%) and the genera Wallemia (7.56%), Botryosphaeria (6.91%), Davidiella (5.14%), and Symbiotaphrina (4.87%) were the dominant fungi, and they presented significant differences in four areas and three processed products (p < 0.05). The α-diversity and network complexity exhibited significant differences in the four sampling locations (p < 0.05), with higher in Yunnan (Chao 1, 213.45; Shannon, 4.61; average degree, 19.96) and Hainan (Chao 1, 198.27; Shannon, 4.21; average degree, 22.46) provinces. Significant differences were noted in the three processed samples; and SAS group had highest α-diversity (Chao 1, 167.80; Shannon, 4.54) and network complexity (average degree, 18.32). Conclusions: In conclusion, the diversity and composition of microbiome on the surface of Arecae semen were shaped by sampling location and processing methods. This work provides details on the surface microbiome of Arecae semen samples and highlights the importance of roles of origin and processing methods in microbiomes, ensuring drug efficacy and food safety.

3.
Zhongguo Zhong Yao Za Zhi ; 47(2): 385-391, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178980

RESUMO

This study aimed to analyze aflatoxins content and fungal community distribution in the harvesting and processing of Platycladi Semen, and explore the key link that affects aflatoxins contamination. The related Platycladi Semen samples of different maturity periods(cone non-rupture period, early rupture, and complete rupture period) and different processing periods(before drying, during 2-d drying, during 7-d drying, before and after seed scale removal, before and after peeling, 1 d after color sorting, and 7 d after color sorting) were collected for identifying the fungal community composition on sample surface by ITS amplicon sequencing. Then the content of aflatoxins B_1, B_2, G_1 and G_2 was determined by HPLC-MS/MS. The results showed that during the harvesting of Platycladi Semen from cone non-rupture to complete rupture, aflatoxins were only detected in the seed scale and seed coat, with aflatoxin G_2 in the seed scale and aflatoxin B_1 in the seed coat. During the drying, with the prolongation of drying time, aflatoxins B_1 and G_2 were detected simultaneously in the seed scale, aflatoxin B_1 in the seed coat, and low-content aflatoxin B_1 in the seed kernel. During subsequent processing, the aflatoxin content in seed kernel during subsequent processing was slighted increased. As demonstrated by fungal detection, Aspergillus flavus was not present during the harvesting of Platycladi Semen, but present during the drying and processing. Its content in the seed coat during the drying process was relatively higher. In short, Platycladi Semen should be harvested as soon as possible after it becomes fully mature. Drying process is the key link of preventing aflatoxin contamination. It is advised to build a sunlight room or adopt similar settings, standardize the operations in other processes, and keep the surrounding environment clean to minimize aflatoxin contamination.


Assuntos
Aflatoxinas , Micobioma , Aflatoxinas/análise , Aspergillus flavus , Contaminação de Alimentos/prevenção & controle , Sêmen/química , Espectrometria de Massas em Tandem
4.
Biol Trace Elem Res ; 200(8): 3712-3722, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34664181

RESUMO

Zinc (Zn) is an essential nutrient for the human body. This nutrient is involved in numerous physiological functions and plays an important role in spermatogenesis. Zn-enriched yeast (ZnY) is considered a Zn supplement with high bioavailability and is widely used as a functional food. However, the effect of ZnY on male reproductive function remains unclear. This study aimed to investigate the beneficial effects of ZnY on the treatment of male spermatogenesis disorders. The spermatogenic dysfunctional mice were established by using cyclophosphamide (CP). CP was administered in saline at a dose of 50 mg/kg bw/day for 5 days by intraperitoneal injection (i.p.). Then, ZnY was orally supplemented at the dose levels of 2, 4, and 8 mg Zn/kg bw/day for 30 days. CP significantly decreased the sperm density and viability, testicular marker enzymes, serum testosterone, follicular stimulating hormone (FSH), and luteinizing hormone (LH). ZnY supplementation significantly improved these sperm parameters and hormone levels. Additionally, ZnY decreased the CP-induced lipid peroxidation and increased the glutathione levels. Moreover, ZnY increased the gene expression of anti-apoptotic proteins and steroid synthetase in mouse testes. The low-dose ZnY supplementation has a better effect on improving spermatogenesis, while the other two groups are less beneficial roles possibly due to excessive Zn intake. The present results suggest that appropriate ZnY can act as an accessory factor to improve steroid production and antioxidant levels in spermatogenic dysfunction mice.


Assuntos
Antioxidantes , Zinco , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Hormônio Luteinizante , Masculino , Camundongos , Saccharomyces cerevisiae , Espermatogênese , Esteroides , Testículo/metabolismo , Testosterona
5.
Toxicology ; 462: 152933, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508822

RESUMO

Lead (Pb) is a toxic metal that affects the male reproductive system. This study aimed to investigate the effects of zinc (Zn) intake between recommended dietary allowances (RDAs) and tolerable upper intake levels (ULs) in preventing male testis damage induced by low-dose Pb. Forty-five mice were randomly divided into control, Pb, and Pb + Zn groups. They were given distilled water ad libitum with 0, 200 mg/L Pb2+, or 15 mg/L Zn2+ mixed with 200 mg/L Pb2+ for 90 consecutive days. The Zn levels in the blood and testis of the Pb group were significantly lower than those of the control group. The Pb levels in the blood and testis of the Pb + Zn group were significantly lower than those of the Pb group. Additionally, a significant decrease in sperm density and viability, with a significant increase in sperm abnormality rate and DNA fragmentation index, was observed in the Pb group. Zn supplementation significantly improved the above sperm parameters. Moreover, Zn supplementation decreased low-dose Pb-induced lipid peroxidation and increased glutathione, total superoxide dismutase (SOD), and copper/Zn-SOD levels. Furthermore, Zn treatment improved glycolysis products and lactate transporters in Pb-treated mouse testes. Our findings suggest that Zn intake between RDAs and UL can act as a therapeutic agent in protecting against the reproductive impairments associated with Pb exposure.


Assuntos
Glicólise/efeitos dos fármacos , Chumbo/toxicidade , Testículo/efeitos dos fármacos , Zinco/farmacologia , Animais , Suplementos Nutricionais , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Espermatozoides/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA