Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543015

RESUMO

The rhizomes of the genus Atractylodes DC. consist of various bioactive components, including sesquiterpenes, which have attracted a great deal of research interest in recent years. In the present study, we reviewed the previously published literatures prior to November 2023 on the chemical structures, biosynthetic pathways, and pharmacological activities of the sesquiterpenoids from this genus via online databases such as Web of Science, Google Scholar, and ScienceDirect. Phytochemical studies have led to the identification of more than 160 sesquiterpenes, notably eudesmane-type sesquiterpenes. Many pharmacological activities have been demonstrated, particularly anticancer, anti-inflammatory, and antibacterial and antiviral activities. This review presents updated, comprehensive and categorized information on the phytochemistry and pharmacology of sesquiterpenes in Atractylodes DC., with the aim of offering guidance for the future exploitation and utilization of active ingredients in this genus.


Assuntos
Atractylodes , Sesquiterpenos de Eudesmano , Sesquiterpenos , Atractylodes/química , Rizoma/química , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Etnofarmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Fitoterapia
2.
Environ Sci Pollut Res Int ; 29(40): 61122-61134, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35435557

RESUMO

Chromium (Cr) contamination in soil poses a serious security risk for the development of medicine and food with ginseng as the raw material. Microbiome are critical players in the functioning and service of soil ecosystems, but their feedback to Cr-contaminated ginseng growth is still poorly understood. To study this hypothesis, we evaluated the effects of microbiome and different Cr exposure on the soil microbial community using Illumina HiSeq high-throughput sequencing. Our results indicated that 2467 OTUs and 1785 OTUs were obtained in 16S and ITS1 based on 97% sequence similarity, respectively. Bacterial and fungal diversity were affected significantly in Cr-contaminated soil. Besides, Cr contamination significantly changed the composition of the soil bacterial and fungal communities, and some biomarkers were identified in the different classification level of the different Cr-contaminated treatments using LEfSe. Finally, a heatmap of Spearman's rank correlation coefficients and canonical discriminant analysis (CDA) indicated that Chloroflexi, Gemmatimonadetes, Acidobacteria, Verrucomicobia, and Parcubacteria in phylum level and Acidimicrobiia, Gemmatimonadetes, and Deltaproteobacteria in class level were positively correlated with AK, AP, and NO3--N (p < 0.05 or p < 0.01), but negatively correlated with total Cr and available Cr (p < 0.05 or p < 0.01). Similarly, in the fungal community, Tubaria, Mortierellaceae, and Rhizophagus in the phylum level and Glomeromycetes, Agaricomycetes, and Exobasidiomycetes in the class level were positively correlated with AK, AP, and NO3--N (p < 0.05 or p < 0.01), but negatively correlated with total Cr and available Cr (p < 0.05 or p < 0.01). Our findings provide new insight into the effects of Cr contamination on the microbial communities in ginseng-growing soil.


Assuntos
Microbiota , Panax , Bactérias , Cromo/análise , Solo/química , Microbiologia do Solo
3.
BMC Microbiol ; 22(1): 77, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305554

RESUMO

BACKGROUND: Cadmium (Cd) contamination in soil poses a serious safety risk for the development of medicine and food with ginseng as the raw material. Microorganisms are key players in the functioning and service of soil ecosystems, but the effects of Cd-contaminated ginseng growth on these microorganisms is still poorly understood. To study this hypothesis, we evaluated the effects of microorganisms and Cd (0, 0.25, 0.5, 1.0, 2.0, 5.0, and 10.0 mg kg-1 of Cd) exposure on the soil microbial community using Illumina HiSeq high-throughput sequencing. RESULTS: Our results indicated that Cd-contaminated soil affected the soil microbial diversity and composition, and bacterial diversity was affected more than fungal diversity in Cd-contaminated soil, especially according to Shannon indices. The abundance of the soil microbial community decreased and the composition changed according to the relative abundances at the phylum level, including those of Saccharibacteria and Gemmatimonadetes in bacteria and Mortierellomycota in fungi. The LEfSe algorithm was used to identify active biomarkers, and 45 differentially abundant bacterial taxonomic clades and 16 differentially abundant fungal taxonomic clades were identified with LDA scores higher than 4.0. Finally, a heatmap of Spearman's rank correlation coefficients and canonical discriminant analysis (CDA) indicated that some key biomarkers, Arenimonas, Xanthomonadales, Nitrosomonadaceae, Methylophilales, Caulobacterales, Aeromicrobium, Chitinophagaceae, Acidimicrobiales, Nocardioidaceae, Propionibacteriales, Frankiales, and Gemmatimonadaceae, were positively correlated with the total and available Cd (p<0.05) but negatively correlated with AK, AP, and pH (p<0.05) in the bacterial community. Similarly, in the fungal community, Tubaria, Mortierellaceae, and Rhizophagus were positively correlated with the total and available Cd but negatively correlated with AK, AP, TK, and pH. CONCLUSION: Cd contamination significantly affected microbial diversity and composition in ginseng-growing soil. Our findings provide new insight into the effects of Cd contamination on the microbial communities in ginseng-growing soil.


Assuntos
Microbiota , Micobioma , Panax , Poluentes do Solo , Bactérias , Biomarcadores , Cádmio/farmacologia , Panax/microbiologia , Solo/química , Microbiologia do Solo
4.
Biomater Sci ; 9(9): 3516-3525, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949443

RESUMO

Local administration of therapeutic agents with long-term retention capabilities efficiently avoids nonspecific distribution in normal organs with an increased drug concentration in pathological tissue. Herein, we developed an injectable and degradable alginate-calcium (Ca2+) hydrogel for the local administration of corn-like Au/Ag nanorods (NRs) and doxorubicin hydrochloride (DOX·HCl). The immobilized Au/Ag NRs with strong absorbance in the near-infrared II (NIR-II) window efficiently ablated the majority of tumor cells after 1064 nm laser irradiation and triggered the release of DOX to kill residual tumor cells. As a result, injectable hydrogel-mediated NIR-II photothermal therapy (PTT) and chemotherapy efficiently inhibited tumor growth, resulting in the complete eradication of tumors in most of the treated mice. Furthermore, owing to the confinement of the Au/Ag NRs and DOX·HCl within the hydrogel, such treatment exhibited excellent biocompatibility.


Assuntos
Hipertermia Induzida , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina , Ouro , Hidrogéis , Hipertermia , Camundongos , Neoplasias/terapia
5.
Int J Nanomedicine ; 13: 2491-2505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719396

RESUMO

BACKGROUND: Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe3O4@Au magnetic nanoparticles (Fe3O4@Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. METHODS: The core-shell Fe3O4@Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe3O4@Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe3O4@Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. RESULTS: The inhibitory and apoptotic rates of Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. CONCLUSION: Our studies illustrated that Fe3O4@Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Cetuximab/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Glioma/terapia , Nanopartículas de Magnetita/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Terapia Combinada , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Glioma/patologia , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/uso terapêutico , Camundongos Nus , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Microb Pathog ; 89: 108-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423555

RESUMO

Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Cátions/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Staphylococcus aureus/imunologia , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
7.
Zhongguo Zhong Yao Za Zhi ; 37(19): 2993-6, 2012 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-23270249

RESUMO

The development of traditional Chinese medicine lies in its significant clinical efficacy which is closely related to the bioavailability of drugs. The nature of the material foundation of compounds of traditional Chinese medicine is reflected in multi-component. As for the nature of components themselves, the level of their bioavailability depends on the biopharmaceutical properties, namely solubility and permeability, to a great extent. Therefore, under the guidance of the theory of traditional Chinese medicine and in the combination with modern preparation techniques, this essay reveals key techniques capable of improving the biopharmaceutical properties of components, in the hope of enhancing the clinical efficacy of components of traditional Chinese medicine.


Assuntos
Química Farmacêutica , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Tecnologia Farmacêutica , Humanos , Medicina Tradicional Chinesa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA