Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 550, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723472

RESUMO

BACKGROUND: Phosphorus is one of the essential nutrients for plant growth. Phosphate-solubilizing microorganisms (PSMs) can alleviate available P deficiency and enhance plant growth in an eco-friendly way. Although ammonium toxicity is widespread, there is little understanding about the effect of ammonium stress on phosphorus solubilization (PS) of PSMs. RESULTS: In this study, seven PSMs were isolated from mangrove sediments. The soluble phosphate concentration in culture supernatant of Bacillus aryabhattai NM1-A2 reached a maximum of 196.96 mg/L at 250 mM (NH4)2SO4. Whole-genome analysis showed that B. aryabhattai NM1-A2 contained various genes related to ammonium transporter (amt), ammonium assimilation (i.e., gdhA, gltB, and gltD), organic acid synthesis (i.e., ackA, fdhD, and idh), and phosphate transport (i.e., pstB and pstS). Transcriptome data showed that the expression levels of amt, gltB, gltD, ackA and idh were downregulated, while gdhA and fdhD were upregulated. The inhibition of ammonium transporter and glutamine synthetase/glutamate synthase (GS/GOGAT) pathway contributed to reducing energy loss. For ammonium assimilation under ammonium stress, accompanied by protons efflux, the glutamate dehydrogenase pathway was the main approach. More 2-oxoglutarate (2-OG) was induced to provide abundant carbon skeletons. The downregulation of formate dehydrogenase and high glycolytic rate resulted in the accumulation of formic acid and acetic acid, which played key roles in PS under ammonium stress. CONCLUSIONS: The accumulation of 2-OG and the inhibition of GS/GOGAT pathway played a key role in ammonium detoxification. The secretion of protons, formic acid and acetic acid was related to PS. Our work provides new insights into the PS mechanism, which will provide theoretical guidance for the application of PSMs.


Assuntos
Fósforo , Prótons , Fosfatos , Ácido Acético
2.
Microb Ecol ; 85(2): 478-494, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35157108

RESUMO

Excessive phosphorus can lead to eutrophication in marine and coastal ecosystems. Sulfur metabolism-associated microorganisms stimulate biological phosphorous removal. However, the integrating co-biotransformation mechanism of phosphorus and sulfur in subtropical marine mangrove ecosystems with Spartina alterniflora invasion is poorly understood. In this study, an ecological model of the coupling biotransformation of sulfur and phosphorus is constructed using metagenomic analysis and quantitative polymerase chain reaction strategies. Phylogenetic analysis profiling, a distinctive microbiome with high frequencies of Gammaproteobacteria and Deltaproteobacteria, appears to be an adaptive characteristic of microbial structures in subtropical mangrove ecosystems. Functional analysis reveals that the levels of sulfate reduction, sulfur oxidation, and poly-phosphate (Poly-P) aggregation decrease with increasing depth. However, at depths of 25-50 cm in the mangrove ecosystems with S. alterniflora invasion, the abundance of sulfate reduction genes, sulfur oxidation genes, and polyphosphate kinase (ppk) significantly increased. A strong positive correlation was found among ppk, sulfate reduction, sulfur oxidation, and sulfur metabolizing microorganisms, and the content of sulfide was significantly and positively correlated with the abundance of ppk. Further microbial identification suggested that Desulfobacterales, Anaerolineales, and Chromatiales potentially drove the coupling biotransformation of phosphorus and sulfur cycling. In particular, Desulfobacterales exhibited dominance in the microbial community structure. Our findings provided insights into the simultaneous co-biotransformation of phosphorus and sulfur bioconversions in subtropical marine mangrove ecosystems with S. alterniflora invasion.


Assuntos
Microbiota , Áreas Alagadas , Polifosfatos/análise , Polifosfatos/metabolismo , Filogenia , Espécies Introduzidas , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae , Enxofre/metabolismo , Sulfatos/metabolismo , China
3.
Microbiol Spectr ; 10(3): e0068221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604174

RESUMO

Nitrogen fixation (NF) and phosphorus solubilization (PS) play a key role in maintaining the stability of mangrove ecosystems. In China, the invasion of Spartina alterniflora has brought a serious threat to the mangrove ecosystem. However, systematic research on NF and PS in mangrove sediments has not been conducted, and limited studies have focused on the response of NF and PS to S. alterniflora invasion, particularly at different sediment depths. In the present study, shotgun metagenomics and quantitative PCR were used to study the 0- to 100-cm sediment profile of the mangrove ecosystem in the Beibu Gulf of China. Results showed that the PS potential of mangrove sediments was primarily caused by enzymes encoded by phoA, phoD, ppx, ppa, and gcd genes. S. alterniflora changed environmental factors, such as total nitrogen, total phosphorus, and total organic carbon, and enhanced the potential of NF and PS in sediments. Moreover, most microorganisms involved in NF or PS (NFOPSMs) responded positively to the invasion of S. alterniflora. Cd, available iron, and salinity were the key environmental factors that affected the distribution of NF and PS genes (NFPSGs) and NFOPSMs. A strong coupling effect was observed between NF and PS in the mangrove ecosystem. S. alterniflora invasion enhanced the coupling of NF and PS and the interaction of microorganisms involved in NF and PS (NFAPSM), thereby promoting the turnover of NP and improving sediment quality. Finally, 108 metagenome-assembled genomes involved in NF or PS were reconstructed to further evaluate NFOPSMs. IMPORTANCE This study revealed the efficient nutrient cycling mechanism of mangroves. Positive coupling effects were observed in sediment quality, NF and PS processes, and NFOPSMs with the invasion of S. alterniflora. This research contributed to the understanding of the effects of S. alterniflora invasion on the subtropical mangrove ecosystem and provided theoretical guidance for mangrove protection, restoration, and soil management. Additionally, novel NFOPSMs provided a reference for the development of marine biological fertilizers.


Assuntos
Ecossistema , Fósforo , Espécies Introduzidas , Fixação de Nitrogênio , Poaceae/fisiologia , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA