Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 24(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699955

RESUMO

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.


Assuntos
Alpinia/genética , DNA de Cloroplastos/genética , Genoma de Cloroplastos/genética , Zingiberaceae/genética , Composição de Bases/genética , Cloroplastos/genética , Repetições de Microssatélites/genética , Estrutura Molecular , Filogenia , Sequenciamento Completo do Genoma/métodos
2.
Mitochondrial DNA B Resour ; 4(2): 2974-2975, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-33365816

RESUMO

Curcuma longa, a well-known traditional medicinal plant in China, belongs to the genus Curcuma family Zingiberaceae. In this study, we firstly assembled the complete chloroplast genome of C. longa based on sequences from Illumina and PacBio sequencing platforms. We obtained the complete chloroplast genome with the total length of 162,176 bp. It consisted of a large single-copy region (LSC, 86,984 bp), a small single-copy region (SSC, 15,694 bp), and a pair of inverted repeats (IRs, 29,749 bp each). Sequence analyses indicated that the chloroplast genome contained 111 distinct genes including 79 protein-coding genes, 28 tRNA genes, and four rRNA genes. The nucleotide composition was asymmetric (31.62% A, 18.42% C, 17.79% G, 32.18% T) with an overall AT content of 63.80%. The AT contents of the LSC, SSC and IR regions were 66.00%, 70.35% and 58.85%, respectively. Sixteen genes owned a single intron, while another two genes had two introns. The phylogenetic analysis indicated that C. longa was closely related to species Curcuma roscoeana within the genus Curcuma in family Zingiberaceae.

3.
Ying Yong Sheng Tai Xue Bao ; 24(5): 1305-12, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-24015548

RESUMO

A field survey with random block design was conducted to study the effects of different landscape patch structure on the arthropod community in tea plantations. In the tea plantations with small woodland (QM) or Acacia confuse (XS) patches, predatory spider had the highest proportion, occupying 62.3% and 69.5% of the total arthropods, respectively, being significantly higher than that in the tea plantations close to paddy field (DT) or near a village (RJ). The tea plantations with QM had the highest diversity index and species richness of arthropod community, while the evenness index and dominance index were not significantly different from the other tea plantations. The tea plantations with QM and XS had much richer natural enemies, and the order of the diversity index, evenness index, and richness index of natural enemies in the tea plantations ranked as QM > XS > DT > RJ. It was suggested that landscape patch structure had great effect on the diversity of arthropod community in tea plantations.


Assuntos
Artrópodes/crescimento & desenvolvimento , Biodiversidade , Camellia sinensis/crescimento & desenvolvimento , Ecossistema , Comportamento Predatório/fisiologia , Animais , Artrópodes/classificação , Camellia sinensis/classificação , Controle Biológico de Vetores/métodos , Aranhas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA