Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 204: 8-19, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37085126

RESUMO

Sepsis can cause various organ dysfunction, which heart failure may be associated with significant mortality. Recently, natural plant extracts have gradually attracted people's attention in the clinical treatment of cardiovascular diseases. Psoralidin (PSO) is one of the main bioactive compounds from the seeds of Psoralea corylifolia L and exhibits remarkable protective effects in diseases, including cancer, osteoporosis, and depression. Recently, NR1H3 is one of the emerging nuclear receptors targets for the various drugs. This study first reported the porotective role of PSO in septic myocardial injury, which was mainly attributed to the NR1H3-dependent manner. NR1H3 knockout mice subjected to cecal ligation and puncture (CLP) were used to investigate the involvement of NR1H3 in PSO protection. Our results showed that PSO prominently improved cardiac function, attenuated inflammation, inhibited oxidative stress, improved mitochondrial function, regulated ERS, suppressed apoptosis, and particularly increased NR1H3 and p-AMPK levels. However, NR1H3 knockout reversed the positive role of PSO in septic mice. Furthermore, activation of NR1H3 by T0901317 also increased the activity of AMPK and ACC in the HL-1 cardiomyocytes, indicating the regulatory relationship between NR1H3 and AMPK signaling. Together, this study demonstrated the beneficial effect of PSO in septic myocardial injury through activation of NR1H3/AMPK pathway.


Assuntos
Traumatismos Cardíacos , Sepse , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Camundongos Knockout , Sepse/tratamento farmacológico , Sepse/genética , Sepse/complicações
2.
J Pharm Biomed Anal ; 227: 115271, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736112

RESUMO

Jitongning tablet (JTNT) is a Traditional Chinese Medicine (TCM) prescription used for the treatment of Ankylosing spondylitis (AS). Currently, it is in phase II clinical trial (NCT03932019) for patients with active axial Spondyloarthritis (axSpA), showing great promise for the treatment of AS. However, the potential material basis and the underlying mechanisms for JTNT to treat AS remain elusive. Here, we performed UPLC-Q-TOF-MS to determine the in vivo metabolic profile of JTNT in rats and conducted in vivo studies including acetic acid-induced writhing, hot plate models, and collagen-induced arthritis (CIA) in rats to evaluate and validate the analgesic and anti-inflammatory effects of JTNT, two main symptoms for AS. Additionally, network pharmacology combined with molecular docking was performed to investigate the potential underlying mechanisms. As a result, a total of 116 xenobiotics were identified from the plasma, urine, and brain tissues of rats after oral administration of JTN extracts. Pharmacological evaluation revealed that fractions JTN-3 and JTN-4 exerted significant analgesic activities by reducing the number of writhes in an acetic acid-induced writhing mice model. JTN extract also exerted excellent therapeutic effects in the CIA model by ameliorating paw edema and decreasing systemic manifestation of inflammation and the level of circulating immune complex (CIC) and interferon γ (IFN-γ). Fractions of JTN extract, especially JTN-2 and JTN-4, on the other hand, ameliorated the secondary lesions caused by chicken type II collagen (CII) to a certain extent. Further, network pharmacology combined with molecular docking suggested crucial roles of inflammation and immune-related genes such as MAPK1, MAPK14, NOS3, and RELA in the treatment of AS by JTNT. In conclusion, our studies suggest that the isoquinoline and diterpenoid alkaloids from Corydalis Rhizoma and Aconiti Radix Cocta, along with coumarins from Angelicae Pubescentis Radix, may be the main bioactive components, and the AS treatment mechanism may mainly involve immune regulation of JTNT. These results help clarify the potential material basis and underlying mechanisms of JTNT for the treatment of AS, facilitating the broad application of this TCM in clinical practice.


Assuntos
Artrite Experimental , Medicamentos de Ervas Chinesas , Espondilite Anquilosante , Camundongos , Ratos , Animais , Espondilite Anquilosante/tratamento farmacológico , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/efeitos adversos , Analgésicos/uso terapêutico , Inflamação/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Comprimidos/efeitos adversos
3.
Phytomedicine ; 104: 154266, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752077

RESUMO

BACKGROUND: Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE: To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS: By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION: Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.


Assuntos
Alcaloides de Amaryllidaceae , Amaryllidaceae , Antimaláricos , Alcaloides de Amaryllidaceae/farmacologia , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Antivirais/farmacologia , Apoptose , Fenantridinas/farmacologia
4.
Oxid Med Cell Longev ; 2022: 2886932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571240

RESUMO

Myocardial dysfunction is well-recognized manifestations of organ dysfunction in sepsis, which is the leading cause of death in critically ill patients. The underlying mechanisms associated with sepsis-induced myocardial injury (SIMI) include cardiac contractility, inflammatory response, oxidative stress, and apoptosis. Kudzu celery decoction (KCD) is composed of a variety of traditional Chinese medicine (TCM) such as kudzu and celery. The previous study found that the main ingredients in kudzu and celery have also been proved to have anti-inflammatory, antioxidative, and other biological activities. In this study, the therapeutic effects of KCD were evaluated in the cecal ligation and puncture (CLP) model of BALB/c mice. The effects of KCD on cardiac function, myocardium damage, inflammation, and fibrosis in CLP-injured mice were analyzed with echocardiography, histological staining, and quantitative real-time PCR. The results showed that KCD treatment improved the anal temperature, sepsis score, blood routine parameters, and blood biochemical parameters in CLP-injured mice. Then, we observed that KCD could remarkably alleviate cardiac dysfunction, myocardial fibrosis, oxidative stress, and inflammation in CLP-injured mice. In this study, we confirmed that KCD has a significant protective effect on SIMI, which may favor KCD a potential cardioprotective drug candidate to alleviate SIMI and further amplify the application of TCM prescription in clinic.


Assuntos
Apium , Traumatismos Cardíacos , Pueraria , Sepse , Animais , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Camundongos , Sepse/complicações , Sepse/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA