RESUMO
Oxidative stress, a predominant cause of apoptosis cascades triggered in neurodegenerative disorders, has been regarded as a critical inducement in the pathogenesis of Alzheimer's disease (AD). Gou Teng-San (GTS) is a traditional Chinese herbs preparation commonly utilized to alleviate cognitive dysfunction and psychological symptoms of patients with dementia. The present study aimed to investigate the protective effects of GTS40, an active fraction of GTS, on H2O2-induced oxidative damage and identify the potential active ingredients. Our results revealed that GTS40 exhibited radical scavenging activity, elevated cell viability, decreased the levels of intracellular reactive oxygen species (ROS), and stabilized mitochondrial transmembrane potential (MMP) in H2O2-treated PC12 cells. In addition, GTS40 blocked the apoptotic cascade by reversing the imbalance of Bcl-2/Bax and inhibiting the activity of caspase-3. Furthermore, an HPLC-QTOFMS method was developed to characterize major chemical constituents in GTS40. Our results revealed twenty-seven identified or tentatively characterized compounds through comparing their retention time (tR) and MS spectra with reference standards. These results suggested that GTS40 was a promising active fraction that may be beneficial in the prevention and treatment of oxidative stress-mediated neurodegenerative disorders.
Assuntos
Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Peróxido de Hidrogênio/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/análise , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Medicamentos de Ervas Chinesas/análise , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/análise , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
The chemical constituents of the water extraction of the aerial parts of Isodon excisoides were investigated by various chromatographic methods including D-101 macroporous adsorptive resins, silica gel, Sephadex LH-20, MCI and semi-preparative HPLC. As a result, six compounds were separated and purified.By analyses of the HR-ESI-MS, 1D and 2D NMR spectra, their structures were determined as 3-O-ß-D-allopyranosyl-1-octen-3-ol(1), blumenolA (2), lumichrome (3), loliolide(4), cirsiliol(5) and pedalitin(6). Compound 1 was a new compound, and compounds 2-4 were isolated from this plant for the first time.
Assuntos
Isodon/química , Compostos Fitoquímicos/química , Componentes Aéreos da Planta/química , Estrutura MolecularRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The genus Uncaria belongs to the family Rubiaceae, which mainly distributed in tropical regions, such as Southeast Asia, Africa and Southeast America. Their leaves and hooks have long been thought to have healing powers and are already being tested as a treatment for asthma, cancer, cirrhosis, diabetes, hypertension, stroke and rheumatism. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of the genus Uncaria to support for further therapeutic potential of this genus. To better understanding this genus, information on the stereo-chemistry and structure-activity relationships in indole alkaloids is also represented. MATERIAL AND METHODS: The literature study of this review is based on various databases search (SCIFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Medalink, Google scholar, ACS, Tropicos, Council of Heads of Australasian Herbaria, The New York Botanical Garden, African Plants Database at Genera Botanical Garden, The Plant List and SEINet) and library search for Biological Abstract and some local books on ethnopharmacology. RESULTS: 19 species of the genus Uncaria are found to be important folk medicines in China, Malaysia, Phillippines, Africa and Southeast America, etc, and have been served for the treatment of asthma, rheumatism, hyperpyrexia, hypertension and headaches, etc. More than 200 compounds have been isolated from Uncaria, including indole alkaloids, triterpenes, flavonoids, phenols, phenylpropanoids, etc. As characteristic constituents, indole alkaloids have been considered as main efficacy component for hypertension, epilepsy, depressant, Parkinson's disease and Alzheimer's disease. In addition, pharmacokinetic and metabolism investigation reveal that the indole alkaloids are likely to be absorbed, metabolized and excreted at early time points. Moreover, the specific inhibition of CYP isozymes can regulate their hydroxylation metabolites at C-10 and C-11. CONCLUSION: Preliminary investigations on pharmacological properties of the Uncaria species have enlightened their efficacious remedy for hypertension, asthma, cancer, diabetes, rheumatism and neurodegenerative diseases. To ensure the safety and effectiveness in clinical application, research on bioactive compounds, pharmacological mechanisms and toxicity of the genus Uncaria as well as the stereo-chemistry and structure-activity relationships of indole alkaloids seem very important.