Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 611: 193-204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34953455

RESUMO

Multifunctional phototheranostics combining diagnostic and therapeutic modalities may provide a revolutionary opportunity for cancer treatment. As a promising tumor phototheranostic molecule, IR780 iodide (IR780) shows excellent photodynamic and photothermal performance under near-infrared laser irradiation; however, its hydrophobicity and instability limit its further use in organisms. This work demonstrates the design and development of a multifunctional nanoplatform (PMIDA, referring to polydopamine (PDA)-manganese dioxide (MnO2)-IR780) for imaging-guided phototherapy. The good biocompatibility of PDA greatly improves the water solubility and photostability of IR780, and its excellent photothermal properties make PMIDA a dual photothermal therapy (PTT). MnO2-induced generation of oxygen in the tumor microenvironment improves the hypoxia effect and photodynamic therapy (PDT) of IR780. Moreover, Mn2+ serves as a decent T1-weighted magnetic resonance imaging (MRI) probe to guide treatment. Notably, in relevant cellular assays, PMIDA shows high photodynamic and photothermal effects contributing to the final therapeutic effect. The MRI-guided PDT/PTT synergistic therapy effect in vivo is demonstrated by precise tumor diagnosis and complete tumor elimination outcomes. Based on these experiments, PMIDA nanoparticles display promising effects in facilitating intravenous injection of IR780 and achieving magnetic resonance imaging (MRI)-guided phototheranostic efficacy for tumor treatment.


Assuntos
Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Indóis , Iodetos , Imageamento por Ressonância Magnética , Compostos de Manganês , Óxidos , Fototerapia , Terapia Fototérmica , Polímeros
2.
J Cardiovasc Pharmacol Ther ; 20(4): 428-38, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25604781

RESUMO

BACKGROUND: With the rise of the burden of ischemic heart disease, both clinical and economic evidence show a desperate need to protect the heart against myocardium ischemia-reperfusion injury-related complications following cardiac surgery or percutaneous coronary intervention. However, there is no effective intervention for myocardium ischemia-reperfusion injury as yet. METHODS: We pretreated mice with 4 daily 2.0 absolute atmosphere (ATA) hyperbaric oxygen, then observed its effects on heart function parameters and infarct size following in situ ischemia-reperfusion. Multiple oxidative and inflammation products were measured in the myocardium. Next, we investigated the expression of heme oxygenase 1 (HO-1), phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt) pathway, and NF-E2-related factor 2 (Nrf2) in the presence of myocardium ischemia-reperfusion injury, hyperbaric oxygen preconditioning, and their inhibitors and their effects on heart function parameters. RESULTS: Hyperbaric oxygen preconditioning ameliorated the cardiac function and histological alterations induced by myocardium ischemia-reperfusion injury, decreased oxidative products and proinflammatory cytokine. Hyperbaric oxygen preconditioning increased expression of HO-1, which was suppressed by PI3K inhibitor LY294002, Nrf2 knockout, and Akt inhibitor triciribine. The expression of Nrf2 was enhanced by hyperbaric oxygen preconditioning, but decreased by LY294002 and triciribine. The Akt was also activated by hyperbaric oxygen preconditioning but suppressed by LY294002. The hemodynamic assays showed that cardiac function was suppressed by LY294002, Nrf2 knockout, and triciribine. CONCLUSION: These data present a novel signaling mechanism by which hyperbaric oxygen preconditioning protects myocardium ischemia-reperfusion injury via PI3K/Akt/Nrf2-dependent antioxidant defensive system.


Assuntos
Heme Oxigenase-1/genética , Oxigenoterapia Hiperbárica/métodos , Precondicionamento Isquêmico/métodos , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Antioxidantes/metabolismo , Cromonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/complicações , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA