Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613061

RESUMO

BACKGROUND: A healthy, well-balanced diet plays an essential role in respiratory diseases. Since micronutrient deficiency is relatively common in patients with chronic obstructive pulmonary disease (COPD), micronutrient supplementation might have the beneficial health effects in those patients. This systematic review and meta-analysis aimed to demonstrate the impact of micronutrient supplementation on the lung function of patients with COPD. METHODS: The PubMed, Cochrane Library, and Web of Science databases were searched from their corresponding creation until February 2024. Search terms included 'chronic obstructive pulmonary disease', 'COPD', 'micronutrients', 'dietary supplements', 'vitamins', 'minerals', and 'randomized controlled trials'. Meta-analysis was performed to evaluate the effects of micronutrient supplementation alone or complex on lung function in patients with COPD. RESULTS: A total of 43 RCTs fulfilled the inclusion criteria of this study. Meta-analysis revealed that vitamin D supplementation could significantly improve FEV1% (WMDdifferences between baseline and post-intervention (de): 6.39, 95% CI: 4.59, 8.18, p < 0.01; WMDpost-intervention indicators (af): 7.55, 95% CI: 5.86, 9.24, p < 0.01) and FEV1/FVC% (WMDde: 6.88, 95%CI: 2.11, 11.65, WMDaf: 7.64, 95% CI: 3.18, 12.10, p < 0.001), decrease the odds of acute exacerbations, and improve the level of T-cell subsets, including CD3+%, CD4+%, CD8+%, and CD4+/CD8+% (all p < 0.01). The effects of compound nutrients intervention were effective in improving FEV1% (WMDde: 8.38, 95%CI: 1.89, 14.87, WMDaf: 7.07, 95%CI: -0.34, 14.48) and FEV1/FVC% (WMDde: 7.58, 95% CI: 4.86, 10.29, WMDaf: 6.00, 95% CI: 3.19, 8.81). However, vitamin C and vitamin E supplementation alone had no significant effects on lung function (p > 0.05). CONCLUSIONS: Micronutrient supplementation, such as vitamin D alone and compound nutrients, has improved effect on the lung function of patients with COPD. Therefore, proper supplementation with micronutrients would be beneficial to stabilize the condition and restore ventilation function for COPD patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/terapia , Vitaminas/uso terapêutico , Respiração , Micronutrientes , Vitamina D , Suplementos Nutricionais , Pulmão
2.
Nutrients ; 14(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458230

RESUMO

The adverse effects of anti-tuberculosis (TB) drugs in the intestines were related to alteration of the intestinal microbiota. However, there was less information about microbial metabolism on the adverse reactions. This study aimed to explore whether Lactobacillus casei could regulate gut microbiota or short-chain fatty acids (SCFAs) disorders to protect intestinal adverse reactions induced by isoniazid (H) and rifampicin (R). Male Wistar rats were given low and high doses of Lactobacillus casei two hours before daily administration of anti-TB drugs. After 42 days, colon tissue and blood were collected for analysis. The feces at two-week and six-week were collected to analyze the microbial composition and the content of SCFAs in colon contents was determined. Supplementation of Lactobacillus casei increased the proportion of intestinal goblet cells induced by H and R (p < 0.05). In addition, HR also reduced the level of mucin-2 (p < 0.05), and supplementation of Lactobacillus casei restored. After two weeks of HR intervention, a decrease in OTUs, diversity index, the abundance of Bacteroides, Akkermansia, and Blautia, and an increase of the abundance of Lacetospiraceae NK4A136 group and Rumencoccus UCG-005, were observed compared with the control group (p all < 0.05). These indices in Lactobacillus casei intervention groups were similar to the HR group. Six-week intervention resulted in a dramatic reduction of Lacetospiraceae NK4A136 group, butyric acid, valeric acid and hexanoic acid, while an increase of Bacteroides and Blautia (p all < 0.05). Pretreatment with Lactobacillus casei significantly increased the content of hexanoic acid compared with HR group (p < 0.05). Lactobacillus casei might prevent intestinal injury induced by anti-tuberculosis drugs by regulating gut microbiota and SCFAs metabolism.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Animais , Antituberculosos/efeitos adversos , Antituberculosos/metabolismo , Caproatos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Intestinos , Lacticaseibacillus casei/metabolismo , Masculino , Probióticos/uso terapêutico , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA