Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Toxicol Appl Pharmacol ; 472: 116570, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268026

RESUMO

Bone cancer pain is a difficult-to-treat pathologic condition that impairs the patient's quality of life. The effective therapy options for BCP are restricted due to the unknown pathophysiology. Transcriptome data were obtained from the Gene Expression Omnibus database and differentially expressed gene extraction was performed. DEGs integrated with pathological targets found 68 genes in the study. Butein was discovered as a possible medication for BCP after the 68 genes were submitted to the Connectivity Map 2.0 database for drug prediction. Moreover, butein has good drug-likeness properties. To collect the butein targets, we used the CTD, SEA, TargetNet, and Super-PRED databases. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed butein's pharmacological effects, indicating that butein may aid in treating BCP by altering the hypoxia-inducible factor, NF-kappa B, angiogenesis, and sphingolipid signaling pathways. Moreover, the pathological targets integrated with drug targets were obtained as the shared gene set A, which was analyzed by ClueGO and MCODE. Biological process analysis and MCODE algorithm further analyzed that BCP related targets were mainly involved in signal transduction process and ion channel-related pathways. Next, we integrated targets related to network topology parameters and targets of core pathways, identified PTGS2, EGFR, JUN, ESR1, TRPV1, AKT1 and VEGFA as butein regulated hub genes by molecular docking, which play a critical role in its analgesic effect. This study lays the scientific groundwork for elucidating the mechanism underlying butein's success in the treatment of BCP.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Medicamentos de Ervas Chinesas , Osteossarcoma , Humanos , Farmacologia em Rede , Simulação de Acoplamento Molecular , Qualidade de Vida , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Biologia Computacional
2.
J Ethnopharmacol ; 311: 116448, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030557

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Tripterygium wilfordii Hook. f. has been widely used in clinical practice due to its good anti-inflammatory and analgesic activities. However, its application is limited by potential toxicity and side effects. AIM OF THE STUDY: The study aimed to identify the mechanisms responsible for the pharmacological activity and cardiotoxicity of the main monomers of Tripterygium wilfordii. MATERIALS AND METHODS: Database analysis predicted that ion channels may be potential targets of Tripterygium wilfordii. The regulatory effects of monomers (triptolide, celastrol, demethylzeylasteral, and wilforgine) on protein Nav1.5 and Nav1.7 were predicted and detected by Autodock and patch clamping. Then, we used the formalin-induced pain model and evaluated heart rate and myocardial zymograms to investigate the analgesic activity and cardiotoxicity of each monomer in vivo. RESULTS: All four monomers were able to bind to Nav1.7 and Nav1.5 with different binding energies and subsequently inhibited the peak currents of both Nav1.7 and Nav1.5. The monomers all exhibited analgesic effects on formalin-induced pain; therefore, we hypothesized that Nav1.7 is one of the key analgesic targets. Demethylzeylasteral reduced heart rate and increased the level of creatine kinase-MB, thus suggesting a potential cardiac risk; data suggested that the inhibitory effect on Nav1.5 might be an important factor underlying its cardiotoxicity. CONCLUSION: Our findings provide an important theoretical basis for the further screening of active monomers with higher levels of activity and lower levels of toxicity.


Assuntos
Triterpenos , Canais de Sódio Disparados por Voltagem , Tripterygium , Cardiotoxicidade
3.
Int J Biol Macromol ; 216: 537-546, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809671

RESUMO

Corydalis yanhusuo W. T. Wang, a traditional Chinese herbal medicine, has been used as an analgesic for thousands of years and it also promotes blood circulation. In this study, 33 Corydalis yanhusuo alkaloid active components were acquired from Traditional Chinese Medicine Database and Analysis Platform (TCMSP). A total of 543 pain-related targets, 1774 arrhythmia targets, and 642 potential targets of these active components were obtained using Swiss Target Prediction, GeneCards, Open Target Platform, and Therapeutic Target Database. Fifty intersecting targets were visualized through a Venn diagram, KEGG and GO pathway enrichment analysis. The analysis proposed that sodium ion channels are likely potential targets of Corydalis yanhusuo active components as analgesia and anti-arrhythmia agents. Molecular docking showed that the 33 components could bind to Nav1.7 and Nav1.5 (two subtypes of ion channel proteins) with different binding energies. In a patch clamp study, dihydrosanguinarine and dihydrochelerythrine, two monomers with the strongest binding effects, could inhibit the peak currents and promote both activation and inactivation phases of Nav1.5. Meanwhile, dihydrosanguinarine and dihydrochelerythrine could also inhibit peak currents and promote the activation phase of Nav1.7. Therefore, the findings from this study provide valuable information for future uses of traditional Chinese medicines to treat pain and cardiovascular disease.


Assuntos
Corydalis , Medicamentos de Ervas Chinesas , Canais de Sódio Disparados por Voltagem , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Antiarrítmicos , Corydalis/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Dor , Extratos Vegetais/química
4.
Pharm Biol ; 59(1): 1045-1057, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34362291

RESUMO

CONTEXT: HuoXue QianYang QuTan Recipe (HQQR) is used to manage hypertension and cardiac remodelling, but the mechanism is elusive. OBJECTIVE: To determine the mechanism of HQQR on obesity hypertension (OBH)-related myocardial fibrosis. MATERIALS AND METHODS: OBH models were prepared using spontaneously hypertensive rats (SHRs) and divided (n = 6) into saline, low-dose (19.35 g/kg/d) HQQR, high-dose (38.7 g/kg/d) HQQR, and valsartan (30 mg/kg/d) groups for 10 weeks. Systolic blood pressure (SBP), and Lee's index were measured. Heart tissues were examined by histology. HQQR's effects were examined on cardiac fibroblasts (CFs) stimulated with angiotensin II and treated with HQQR, a caspase-1 inhibitor, siNLRP3, and oeNLRP3. RESULTS: HQQR(H) reduced SBP (201.67 ± 21.00 vs. 169.00 ± 10.00), Lee's index (321.50 ± 3.87 vs. 314.58 ± 3.88), and left ventricle mass index (3.26 ± 0.27 vs. 2.71 ± 0.12) in vivo. HQQR reduced percentage of fibrosis area (18.99 ± 3.90 vs. 13.37 ± 3.39), IL-1ß (10.07 ± 1.16 vs. 5.35 ± 1.29), and inhibited activation of NLRP3/caspase-1/IL-1ß pathway. HQQR also inhibiting the proliferation (1.09 ± 0.02 vs. 0.84 ± 0.01), fibroblast to myofibroblast transition (14.74 ± 3.39 vs. 3.97 ± 0.53), and collagen deposition (Col I; 0.50 ± 0.02 vs. 0.27 ± 0.05 and Col III; 0.48 ± 0.21 vs. 0.26 ± 0.11) with different concentrations selected based on IC50 in vitro (all ps < 0.05). NLRP3 interference further confirmed HQQR inhibiting NLRP3 inflammasome signalling. CONCLUSION: HQQR blunted cardiac fibrosis development in OBH and suppressed CFs proliferation by directly interfering with the NLRP3/caspase-1/IL-1ß pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibrose/tratamento farmacológico , Coração/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Angiotensina II/farmacologia , Animais , Caspase 1/metabolismo , Inibidores de Caspase , Proliferação de Células/efeitos dos fármacos , Fibrose/induzido quimicamente , Hidroxiprolina/sangue , Hidroxiprolina/metabolismo , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Masculino , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Cultura Primária de Células , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
5.
J Ethnopharmacol ; 280: 114457, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329712

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Pain often causes a series of abnormal changes in physiology and psychology, which can lead to disease and even death. Drug therapy is the most basic and commonly used method for pain relief and management. Interestingly, at present, hundreds of traditional Chinese medicines have been reported to be used for pain relief, most of which are monomer preparations, which have been developed into new painkillers. Corydalis yanhusuo is a representative of one of these medicines and is available for pain relief. AIM OF THE STUDY: This study aims to determine the analgesic effect and the potential targets of the monomers derived from Corydalis yanhusuo, and to explore any possible associated cardiac risk factors. MATERIALS AND METHODS: In this study, four monomers derived from Corydalis yanhusuo (tetrahydropalmatine, corydaline, protopine, dehydrocorydaline) were tested in vivo, using the formalin-induced pain model to determine their analgesic properties. Their potential targets were also determined using whole cell patch clamp recordings and myocardial enzyme assays. RESULTS: The results showed that all monomers showed analgesic activity and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.7, which indicating that Nav1.7 might be involved in the analgesic mechanism of Corydalis yanhusuo. Protopine increased the level of creatine kinase-MB (CK-MB) and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.5, indicating that Nav1.5 might be involved in the cardiac risk associated with protopine treatment. CONCLUSION: These data showed that tetrahydropalmatine produced the best analgesic effect and the lowest cardiac risk. Thus, voltage gated sodium channels (VGSCs) might be the main targets associated with Corydalis yanhusuo. This study, therefore, provides valuable information for future studies and use of traditional Chines medicines for the alleviation of pain.


Assuntos
Analgésicos/farmacologia , Corydalis/química , Medicamentos de Ervas Chinesas/intoxicação , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Alcaloides de Berberina/isolamento & purificação , Alcaloides de Berberina/farmacologia , Células CHO , Cricetulus , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Formaldeído , Camundongos , Dor/tratamento farmacológico , Técnicas de Patch-Clamp , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo
6.
J Ethnopharmacol ; 269: 113736, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359917

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Pain is an unpleasant sensory and emotional experience, often accompanied by the occurrence of a variety of diseases. More than 800 kinds of traditional Chinese medicines (TCM) has now been reported for pain relief and several monomers have been developed into novel analgesic drugs. Bupleurum chinense and Angelica biserrata were representatives of the TCM that are currently available for the treatment of pain. AIM OF THE STUDY: The study aims to detect the potential analgesic activity of each monomer of Bupleurum chinense and Angelica biserrata and to explore whether Nav1.7 is one of the targets for its analgesic activity. MATERIALS AND METHODS: In this study, five monomers from Bupleurum chinense (Saikosaponin A, Saikosaponin B1, Saikosaponin B2, Saikosaponin C, Saikosaponin D) and five monomers from the Angelica biserrata (Osthole, Xanthotoxin, Imperatorin, Isoimperatorin, Psoralen) were examined by whole-cell patch-clamp on Nav1.7, which was closely associated with pain. Classical mouse pain models were also used to further verify the analgesic activity in vivo. RESULTS: The results showed that monomers of Saikosaponins and Angelica biserrata all inhibited the peak currents of Nav1.7, indicating that Nav1.7 might be involved in the analgesic mechanism of Saikosaponins and Angelica biserrata. Among them, Saikosaponin A and Imperatorin showed the strongest inhibitory effect on Nav1.7. Furthermore, both Saikosaponin A and Imperatorin showed inhibitory effects on thermal pain and formalin-induced pain in phase II in vivo. CONCLUSION: The results provide valuable information for future studies on the potential of TCM in alleviating pain.


Assuntos
Analgésicos/farmacologia , Angelica/química , Bupleurum/química , Medicamentos de Ervas Chinesas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Dor/tratamento farmacológico , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Formaldeído/toxicidade , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Temperatura Alta/efeitos adversos , Masculino , Medicina Tradicional Chinesa , Camundongos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Dor/etiologia , Raízes de Plantas/química , Saponinas/farmacologia , Saponinas/uso terapêutico , Sódio/fisiologia
7.
Oxid Med Cell Longev ; 2020: 2153912, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655761

RESUMO

Kidney disease is one of the common diseases with high morbidity and high mortality, which brings a huge burden to the society and the patient's family. The pathogenesis, treatment, and prognosis of kidney diseases are related to oxidative stress, inflammation, mitochondrial damage, and immune dysfunction. However, existing treatments always cause some damage to the kidneys. Kidney disease and immunosuppressant used together often lead to drug toxicity, patients with weakened immunity, organic rupture of the normal structure of the kidney, damage to the physiological function of the kidney, etc. Huaiqihuang is a kind of traditional Chinese medicine with a history of more than one thousand years. According to research, Robinia pseudoacacia can regulate the immune function by regulating oxidative stress, calcium inflow, and mitochondrial ATP. At the same time, it is also involved in regulating the ways of cell death, such as apoptosis, autophagy, ferroptosis, pyroptosis, and clockophagy, to reduce kidney damage, which has important clinical value. This article reviews the exact mechanism and clinical application of Huaiqihuang in different types of nephropathy. The aim is to provide new ideas for the treatment of clinical nephropathy.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Nefropatias/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Nefropatias/imunologia , Nefropatias/patologia , Estresse Oxidativo/efeitos dos fármacos , Morte Celular Regulada/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Infect Dis Poverty ; 9(1): 99, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690096

RESUMO

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has caused a public catastrophe and global concern. The main symptoms of COVID-19 are fever, cough, myalgia, fatigue and lower respiratory tract infection signs. Almost all populations are susceptible to the virus, and the basic reproduction number (R0) is 2.8-3.9. The fight against COVID-19 should have two aspects: one is the treatment of infected patients, and the other is the mobilization of the society to avoid the spread of the virus. The treatment of patients includes supportive treatment, antiviral treatment, and oxygen therapy. For patients with severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) and circulatory support are recommended. Plasma therapy and traditional Chinese medicine have also achieved good outcomes. This review is intended to summarize the research on this new coronavirus, to analyze the similarities and differences between COVID-19 and previous outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and to provide guidance regarding new methods of prevention, diagnosis and clinical treatment based on autodock simulations. METHODS: This review compares the multifaceted characteristics of the three coronaviruses including COVID-19, SARS and MERS. Our researchers take the COVID-19, SARS, and MERS as key words and search literatures in the Pubmed database. We compare them horizontally and vertically which respectively means concluding the individual characteristics of each coronavirus and comparing the similarities and differences between the three coronaviruses. RESULTS: We searched for studies on each outbreak and their solutions and found that the main biological differences among SARS-CoV-2, SARS-CoV and MERS-CoV are in ORF1a and the sequence of gene spike coding protein-S. We also found that the types and severity of clinical symptoms vary, which means that the diagnosis and nursing measures also require differentiation. In addition to the common route of transmission including airborne transmission, these three viruses have their own unique routes of transmission such as fecal-oral route of transmission COVID-19. CONCLUSIONS: In evolutionary history, these three coronaviruses have some similar biological features as well as some different mutational characteristics. Their receptors and routes of transmission are not all the same, which makes them different in clinical features and treatments. We discovered through the autodock simulations that Met124 plays a key role in the efficiency of drugs targeting ACE2, such as remdesivir, chloroquine, ciclesonide and niclosamide, and may be a potential target in COVID-19.


Assuntos
Antivirais/química , Infecções por Coronavirus , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral , Receptores Virais/química , Síndrome Respiratória Aguda Grave , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/metabolismo , Betacoronavirus/genética , Betacoronavirus/fisiologia , Betacoronavirus/ultraestrutura , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Ensaios Clínicos como Assunto , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Reservatórios de Doenças , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/ultraestrutura , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Pneumonia Viral/transmissão , Receptores de Coronavírus , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/ultraestrutura , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/transmissão , Tratamento Farmacológico da COVID-19
9.
Oxid Med Cell Longev ; 2020: 2172740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256947

RESUMO

Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch B were mainly through apoptosis and cell cycle arrest at the diver's stage. It is reported that Sch B could be used as effective chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural drug candidate.


Assuntos
Lignanas , Medicina Tradicional Chinesa/métodos , Compostos Policíclicos , Ciclo-Octanos , Humanos
10.
Biomed Pharmacother ; 109: 2365-2374, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551496

RESUMO

BACKGROUND: The anti-tumor properties of Alpinia oxyphylla Miquel (A. oxyphylla) extracts and their petroleum ether (PE) fractions have long attracted scientific attention. These extracts' anti-tumor activity and mechanisms in vivo are still unclear. This study was designed to investigate the anti-tumor activity and the underlying mechanism of PE's effect on hepatocellular carcinoma (HCC) in vitro and in vivo. MATERIALS AND METHOD: The anti-tumor activity of PE was evaluated by MTT assay and xenograft study. Mechanistic studies of PE were analyzed by Hoechst 33342 staining, Annexin V-FITC/PI double-staining assay, immunohistochemical staining and western blot assay. The toxicity of the PE treatment was verified by the levels of liver and kidney function in nude mice and the H&E staining of their liver and kidney tissues. RESULT: PE significantly inhibited the growth of HepG2, BEL-7402, SMMC-7721 and Hep3B cells in a concentration- and time-dependent manner. Specifically, PE inhibited the growth of Hep3B cells by inducing apoptosis. PE treatment at the doses of 0.25, 0.5 and 1 g/kg for 21 days caused a respective 35.7 percent, 49.3 percent and 58.8 percent inhibition of the tumor volume, and a 14.8 percent, 40.2 percent and 55.6 percent decrease in the tumor weight, respectively, as compared with the vehicle group in tumor-loaded mice in vivo. PE promoted the release of cytochrome c from mitochondria to cytosol in a concentration-dependent manner. The expression levels of BAX (p < 0.01), cleaved caspase-9 (p < 0.01) and cleaved caspase-3 (p < 0.05) were increased significantly in the PE-treated group at the dose of 1 g/kg; the expression level of BAX (p < 0.05) was increased significantly in the PE-treated group at the dose of 0.5 g/kg, and the expression level of Bcl-2 (p < 0.01) was decreased significantly in the PE-treated group in a concentration-dependent manner. Apoptosis was induced by PE through up-regulating the expression of PTEN, down-regulating the expression of PI3K and inhibiting the phosphorylation of Akt. The liver and kidney function of the plasma and the morphology of the liver and kidney were normal in each group. CONCLUSION: These findings suggested that PE exhibited anti-cancer efficacy on Hep3B cell in vitro and in vivo. The induction of apoptosis might be one mechanism that underlies PE's ability to combat cancer by inhibiting the PI3K/Akt pathway. PE has no obvious toxicity in vivo when it exerts anti-tumor effects and has the potential to develop into an alternative anti-cancer drug for HCC treatment.


Assuntos
Alpinia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Óleos de Plantas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Fosfoinositídeo-3 Quinase , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Anticancer Drugs ; 28(6): 603-612, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28422767

RESUMO

Pseudolaric acid B (PAB) is the most active constituent extracted from the bark of Pseudolarix kaempferi, which has been used as an antifungal remedy in traditional Chinese medicine. It is reported to have cytotoxicity to many tumor cell lines. In this study, we investigated the effects of PAB against human endometrial cancer Ishikawa cells. We found that PAB inhibited Ishikawa cell proliferation, and induced cell apoptosis and G2/M phase arrest through a mechanism involving AKT-GSK-3ß and ERK1/2 signaling pathways. PAB also suppressed the Ishikawa cell adhesion, invasion, migration, and colony formation ability by increasing the expression of E-cadherin, Ezrin, and Kiss-1, and decreasing the expression of matrix metalloproteinase-9 and vascular endothelial growth factor. Taken together, these data indicated that PAB can be expected to be a novel treatment agent for endometrial cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/patologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Sci Rep ; 6: 38521, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917945

RESUMO

To conduct a meta-analysis of clinical trials that examined the effect of music-supported therapy on stroke-induced motor dysfunction, comprehensive literature searches of PubMed, Embase and the Cochrane Library from their inception to April 2016 were performed. A total of 10 studies (13 analyses, 358 subjects) were included; all had acceptable quality according to PEDro scale score. The baseline differences between the two groups were confirmed to be comparable. Compared with the control group, the standardized mean difference of 9-Hole Peg Test was 0.28 (-0.01, 0.57), 0.64 (0.31, 0.97) in Box and Block Test, 0.47 (0.08, 0.87) in Arm Paresis Score and 0.35 (-0.04, 0.75) in Action Research Arm Test for upper-limb motor function, 0.11 (-0.24, 0.46) in Berg Balance Scale score, 0.09 (-0.36, 0.54) in Fugl-Meyer Assessment score, 0.30 (-0.15, 0.74) in Wolf Motor Function Test, 0.30 (-0.15, 0.74) in Wolf Motor Function time, 0.65 (0.14, 1.16) in Stride length and 0.62 (0.01, 1.24) in Gait Velocity for total motor function, and 1.75 (0.94, 2.56) in Frontal Assessment Battery score for executive function. There was evidence of a positive effect of music-supported therapy, supporting its use for the treatment of stroke-induced motor dysfunction. This study was registered at PRESPERO (CRD42016037106).


Assuntos
Atividade Motora , Musicoterapia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Função Executiva , Feminino , Humanos , Masculino , Extremidade Superior/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA