Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol ; 62(2): 113-124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411880

RESUMO

Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1ß (IL-1ß; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.


Assuntos
Aspergillus , Ácido Glicirrízico , Oxepinas , Ácido Glicirrízico/farmacologia , Oxepinas/farmacologia , Transdução de Sinais , Ácidos Carboxílicos/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Lactonas/farmacologia , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa
2.
Zhongguo Zhong Yao Za Zhi ; 45(4): 890-895, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237490

RESUMO

The solid wastes of Chinese materia dedica industrialization represented by Salvia miltiorrhiza residues have a strong small-molecule bio-recalcitrance in the process of high-value utilization of biotransformation. Highly tolerant strains were bred to break bio-recalcitrance of Salvia miltiorrhiza residues and produce high-value added cellulose, which has a significant significance for recycling and industrial utilization of solid waste. In this study, a strain of fungus, Penicillium expansum SZ13, was found with small-molecule antibacterial substance tanshinone contained in Salvia miltiorrhiza residues by a biological method. The optimal enzyme production process and peak period of SZ13 were determined. It was found that SZ13 could maintain peak enzyme production for 5 days by degrading residues under the conditions of temperature 35 ℃, rotation speed 180 r·min~(-1), 5% of residues addition, and 5% seed solution addition. Meanwhile, the ability of SZ13 to degrade the enzyme production of multiple types of residues was explored. The results showed a high enzyme activity and stable enzyme production of SZ13 in the process of degrading residues. SZ13 could efficiently utilize various types of Chinese medicine residues, such as Salvia miltiorrhiza residues, to realize the high-value utilization of cellulose in multiple types of residues.


Assuntos
Celulase/biossíntese , Fermentação , Materia Medica , Penicillium/metabolismo , Salvia miltiorrhiza , Resíduos Sólidos , China , Indústria Farmacêutica , Medicamentos de Ervas Chinesas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA