Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3753-3764, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475067

RESUMO

Prunus mume is an edible and medicinal material, and Mume Fructus is its processed product, which was first recorded in Shennong's Classic of Materia Medica(Shen Nong Ben Cao Jing). It is an effective drug for stopping diarrhea with astringents and promoting fluid production to quiet ascaris. By consulting the ancient herbal works of the past dynasties, modern codes, and other rela-ted literature, this paper sorted out the medicinal evolution of Mume Fructus, examined the ancient efficacy of Mume Fructus and the main indications, and summarized the inclusion of Mume Fructus in national and provincial standards. It is recorded in the ancient herbal works of the past dynasties that Mume Fructus can be processed by various methods such as roasting, stir-frying or micro-frying, stir-frying with charcoal, single steaming, steaming with wine, and steaming after soaking in wine or vinegar, and prepared into pills, powders, and ointments, which are used in the treatment of fatigue, diabetes, malaria, dysentery, ascariasis, and other diseases. Mume Fructus has been included in nine editions of Chinese Pharmacopoeia and 19 provincial and municipal preparation specifications. The processing method of Mume Fructus is determined, namely, clean P. mume should be softened by moistening in water or steaming and pitted. By reviewing the effects of processing on its chemical composition, pharmacological effects, and its modern clinical application, this paper identified the following issues. The ancient application methods of Mume Fructus are diverse but less commonly used in modern times, there is a lack of standardized research on the processing, and the research on the changes caused by the difference in Mume Fructus before and after processing is not deep. Therefore, it is necessary to further investigate the change pattern of its chemical composition before and after processing and its correlation between its medicinal activity to standardize the processing technology and provide a solid basis for the use of Mume Fructus in parts and its quality control.


Assuntos
Medicamentos de Ervas Chinesas , Materia Medica , Prunus , Medicamentos de Ervas Chinesas/farmacologia , Materia Medica/análise , Frutas/química , Controle de Qualidade , Prunus/química , Medicina Tradicional Chinesa
2.
Oxid Med Cell Longev ; 2020: 7895293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774683

RESUMO

Multiple sclerosis (MS) is a common inflammatory demyelinating disorder of the central nervous system. Bu-shen-yi-sui capsule (BSYSC) could significantly reduce the relapse rate, prevent the progression of MS, and enhance remyelination following neurological injury in experimental autoimmune encephalomyelitis (EAE), an established model of MS; however, the mechanism underlying the effect of BSYSC on remyelination has not been well elucidated. This study showed that exosomes carrying biological information are involved in the pathological process of MS and that modified exosomes can promote remyelination by modulating related proteins and microRNAs (miRs). Here, the mechanism by which BSYSC promoted remyelination via exosome-mediated molecular signals was investigated in EAE mice and oligodendrocyte progenitor cells (OPCs) in vitro. The results showed that BSYSC treatment significantly improved the body weight and clinical scores of EAE mice, alleviated inflammatory infiltration and nerve fiber injury, protected the ultrastructural integrity of the myelin sheath, and significantly increased the expression of myelin basic protein (MBP) in EAE mice. In an in vitro OPC study, BSYSC-containing serum, especially 20% BSYSC, promoted the proliferation and migration of OPCs and induced OPCs to differentiate into mature oligodendrocytes that expressed MBP. Furthermore, BSYSC treatment regulated the expression of neuropilin- (NRP-) 1 and GTX, downregulated the expression of miR-16, let-7, miR-15, miR-98, miR-486, and miR-182, and upregulated the level of miR-146 in serum exosomes of EAE mice. In conclusion, these results suggested that BSYSC has a neuroprotective effect and facilitates remyelination and that the mechanism underlying the effect of BSYSC on remyelination probably involves regulation of the NRP-1 and GTX proteins and miRs in serum exosomes, which drive promyelination.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Exossomos/metabolismo , Medicina Herbária/métodos , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Remielinização/efeitos dos fármacos , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos , Transdução de Sinais
3.
J Ethnopharmacol ; 217: 36-48, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29428242

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bu Shen Yi Sui capsule (BSYSC), based on traditional Chinese formula Liu Wei Di Huang pill, is effective for the treatment of multiple sclerosis (MS) in clinical experience and trials. Our previous studies confirmed that BSYSC had the neuroprotective effect in MS and its animal model, experimental autoimmune encephalomyelitis (EAE); however, its mechanism of action was not clear. Thus, the effect of BSYSC on remyelination and the underlying mechanisms were investigated in the EAE mice. MATERIALS AND METHODS: The EAE model was established by injecting subcutaneously myelin oligodendrocyte protein (MOG) 35-55 in mice. Mice were treated with BSYSC (3.02 g/kg) or vehicle daily by oral gavage for 40 days. The body weight and clinical score of mice were evaluated. Brain was observed by magnetic resonance imaging. The inflammation infiltrate of brain and spinal cord was determined by hematoxylin-eosin staining, while the structure of myelin sheath was visualized by transmission electron microscopy on days 23 and 40 post immunization (dpi), respectively. The protein and mRNA levels of platelets-derived growth factor receptor (PDGFR) α and 2', 3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) were measured by immunohistochemistry, western blot and quantitative real-time polymerase chain reaction. The protein expressions of semaphorins (Sema) 3A, Neuropilin (NRP) - 1, leukemia inhibitory factor (LIF), LIF receptor (LIFR) and Nkx6.2 were further investigated by western blot. RESULTS: BSYSC treatment improved the body weight and clinical score of EAE mice, alleviated inflammatory infiltration and nerve fiber injuries. It also protected the ultrastructural integrity of myelin sheath. BSYSC significantly increased expressions of PDGFRα and CNPase in mice with EAE on 40 dpi. Furthermore, BSYSC treatment increased the expressions of LIF, LIFR and Nkx6.2 and reduced Sema3A and NRP-1 in EAE mice on 40 dpi. CONCLUSIONS: The data demonstrated that BSYSC exhibited the neuroprotective effect against EAE by promoting oligodendrocyte progenitor cells (OPCs) proliferation and differentiation, thus facilitating remyelination. Sema3A/NRP-1, LIF/LIFR and Nkx6.2 are likely contributed to the effects of BSYSC on OPCs.


Assuntos
Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Proteínas de Homeodomínio/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/metabolismo , Bainha de Mielina/efeitos dos fármacos , Neuropilina-1/metabolismo , Fármacos Neuroprotetores/farmacologia , Semaforina-3A/metabolismo , Medula Espinal/efeitos dos fármacos , Fatores de Transcrição/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Administração Oral , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Cápsulas , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Glicoproteína Mielina-Oligodendrócito , Fármacos Neuroprotetores/administração & dosagem , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Fragmentos de Peptídeos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA