Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31885668

RESUMO

OBJECTIVE: Postincision pain often occurs after surgery and is an emergency to be treated in clinic. Electroacupuncture (EA) is a Chinese traditional treatment widely used to cure acute or chronic pain, but its mechanism is not clear. Interleukin-10 (IL-10) is a powerful anti-inflammatory cytokine that shows neuroprotective effects in inflammation and injury in the CNS. The present study attempts to reveal that IL-10 is crucial for EA analgesia on postincision pain. METHODS: A model of incision pain was established in C57BL/6J mice. The pain threshold was detected by behavioral test, and the expression of IL-10 and its receptor was detected by an immunohistochemical method. C-fiber-evoked field potentials were recorded by in vivo analysis. RESULTS: The mechanical allodynia induced by paw incision was significantly inhibited by pretreatment of EA in mice. Intrathecal injection of IL-10 neutralizing antibody (2 µg/10 µL) but not intraplantar injection (10 µg/10 µL) reversed the analgesia of EA. The upregulations of IL-10 mRNA and protein were induced by EA at 6 h and 1 d after incision, respectively. Spinal long-term potentiation (LTP), a substrate for central sensitization, was also suppressed by EA with IL-10. IL-10 recombinant protein (1 µg/10 µL, i.t.) mimicked the analgesia of EA on mechanical allodynia and inhibition on the spinal LTP. Posttreatment of EA after incision also transitorily relieved the mechanical allodynia, which can be blocked by spinal IL-10 antibody. IL-10 and its receptor, IL-10RA, are predominantly expressed in the superficial spinal astrocytes. CONCLUSIONS: These results suggested that pretreatment of EA effectively prevented postincision pain and IL-10 in spinal astrocytes was critical for the analgesia of EA and central sensitization.

2.
Sheng Li Xue Bao ; 70(3): 237-244, 2018 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-29926064

RESUMO

Post-incision pain often occurs after surgery and is emergent to be treated in clinic. It hinders the rehabilitation of patients and easily leads to various types of postoperative complications. Acupuncture-combined anesthesia (ACA) is the combination of traditional acupuncture and modern anesthesia, which means acupuncture is applied at acupoints with general anesthesia. It was testified that ACA strengthened the analgesic effect and reduced the occurrence of postoperative pain, but its mechanism was not clear. Numerous reports have shown that chemokine receptor CX3CR1 is involved in the development and progression of many pathological pains. The present study was aimed to reveal whether ACA played the analgesic roles in the post-incision pain by affecting CX3CR1. A model of toe incision pain was established in C57BL/6J mice. The pain threshold was detected by behavioral test, and the expression of CX3CR1 protein was detected by immunohistochemical method and Western blot. The results showed that the significant mechanical allodynia and thermal hyperalgesia were induced by paw incision in the mice. Mechanical allodynia was significantly suppressed by ACA, but thermal hyperalgesia was not changed. CX3CR1 was mainly expressed in microglia in the spinal cord dorsal horn, and its protein level was significantly increased at 3 d after incision compared with that of naïve C57BL/6J mice. ACA did not affect CX3CR1 protein expression at 3 d after incision in the toe incision model mice. Paw withdrawal threshold was significantly increased at 3 d after incision in CX3CR1 knockout (KO) mice compared with that in the C57BL/6J mice. But the analgesic effect of ACA was disappeared in CX3CR1 KO mice. Accordingly, it was also blocked when neutralizing antibody of CX3CR1 was intrathecally injected (i.t.) 1 h before ACA in the C57BL/6J mice. These results suggest that CX3CR1 in microglia is involved in post-incision pain and analgesia of ACA.


Assuntos
Analgesia por Acupuntura , Receptor 1 de Quimiocina CX3C/fisiologia , Hiperalgesia/fisiopatologia , Dor Pós-Operatória/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Limiar da Dor , Medula Espinal , Corno Dorsal da Medula Espinal/citologia
3.
Neurochem Res ; 35(11): 1780-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20717722

RESUMO

Previous studies indicated that disruption of glial function in the spinal cord enhanced electroacupuncture (EA) analgesia in arthritic rats, suggesting glia is involved in processing EA analgesia. To probe into the potential value for clinical practice, the present study was to investigate the effect of propentofylline, a glia inhibitor, on EA analgesia in rats. Mechanical allodynia induced by tetanic stimulation of sciatic nerve (TSS) was used as a pain model. On day 7 after TSS, EA treatment induced a significant increase in paw withdrawal threshold to mechanical stimulation. Intrathecal or intraperitoneal injection of propentofylline relieved TSS-induced mechanical allodynia. The combination of low dosage of propentofylline and EA produced more potent anti-allodynia than propentofylline or EA alone. Immunohistochemistry exhibited that TSS-induced activation of microglia and astrocytes was inhibited significantly by propentofylline. These results indicate that propentofylline and EA induce synergetic analgesia by interrupting spinal glial function.


Assuntos
Analgesia , Eletroacupuntura/métodos , Medula Espinal/fisiopatologia , Xantinas/uso terapêutico , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/terapia , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/fisiopatologia , Medula Espinal/efeitos dos fármacos , Tetania/fisiopatologia
4.
Prog Neurobiol ; 85(4): 355-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18582529

RESUMO

Acupuncture has been accepted to effectively treat chronic pain by inserting needles into the specific "acupuncture points" (acupoints) on the patient's body. During the last decades, our understanding of how the brain processes acupuncture analgesia has undergone considerable development. Acupuncture analgesia is manifested only when the intricate feeling (soreness, numbness, heaviness and distension) of acupuncture in patients occurs following acupuncture manipulation. Manual acupuncture (MA) is the insertion of an acupuncture needle into acupoint followed by the twisting of the needle up and down by hand. In MA, all types of afferent fibers (Abeta, Adelta and C) are activated. In electrical acupuncture (EA), a stimulating current via the inserted needle is delivered to acupoints. Electrical current intense enough to excite Abeta- and part of Adelta-fibers can induce an analgesic effect. Acupuncture signals ascend mainly through the spinal ventrolateral funiculus to the brain. Many brain nuclei composing a complicated network are involved in processing acupuncture analgesia, including the nucleus raphe magnus (NRM), periaqueductal grey (PAG), locus coeruleus, arcuate nucleus (Arc), preoptic area, nucleus submedius, habenular nucleus, accumbens nucleus, caudate nucleus, septal area, amygdale, etc. Acupuncture analgesia is essentially a manifestation of integrative processes at different levels in the CNS between afferent impulses from pain regions and impulses from acupoints. In the last decade, profound studies on neural mechanisms underlying acupuncture analgesia predominately focus on cellular and molecular substrate and functional brain imaging and have developed rapidly. Diverse signal molecules contribute to mediating acupuncture analgesia, such as opioid peptides (mu-, delta- and kappa-receptors), glutamate (NMDA and AMPA/KA receptors), 5-hydroxytryptamine, and cholecystokinin octapeptide. Among these, the opioid peptides and their receptors in Arc-PAG-NRM-spinal dorsal horn pathway play a pivotal role in mediating acupuncture analgesia. The release of opioid peptides evoked by electroacupuncture is frequency-dependent. EA at 2 and 100Hz produces release of enkephalin and dynorphin in the spinal cord, respectively. CCK-8 antagonizes acupuncture analgesia. The individual differences of acupuncture analgesia are associated with inherited genetic factors and the density of CCK receptors. The brain regions associated with acupuncture analgesia identified in animal experiments were confirmed and further explored in the human brain by means of functional imaging. EA analgesia is likely associated with its counter-regulation to spinal glial activation. PTX-sesntive Gi/o protein- and MAP kinase-mediated signal pathways as well as the downstream events NF-kappaB, c-fos and c-jun play important roles in EA analgesia.


Assuntos
Analgesia por Acupuntura , Fenômenos Fisiológicos do Sistema Nervoso , Analgesia por Acupuntura/métodos , Analgesia por Acupuntura/psicologia , Vias Aferentes/fisiologia , Animais , Humanos , Neurotransmissores/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
5.
Exp Neurol ; 198(2): 294-302, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16490194

RESUMO

Activated glia play a major role in mediating behavioral hypersensitive state following peripheral inflammation. Electroacupuncture is well known to relieve persistent inflammatory pain. The present study was undertaken to examine whether fluorocitrate, a glial metabolic inhibitor, could synergize electroacupuncture antagonizing thermal hyperalgesia and mechanical allodynia evoked by ankle joint inflammation. Monoarthritis of rat ankle joint was induced by an intra-articular injection of Complete Freund's Adjuvant (CFA). The paw withdrawal latency (PWL) from a thermal stimulus and paw withdrawal threshold (PWT) from von Frey hairs were measured in awake rats. Intrathecal (i.t.) injection of 1 nmol fluorocitrate markedly suppressed monoarthritis-induced thermal hyperalgesia and mechanical allodynia. Unilateral electroacupuncture stimulation of "Huantiao" (GB30) and "Yanglingquan" (GB34) acupuncture points (100/2 Hz alternation, 1-2-3 mA) significantly elevated the PWLs and PWTs for 45 min after cessation of electroacupuncture in monoarthritic rats. Co-application of 0.1 or 1 nmol fluorocitrate with electroacupuncture significantly potentiated electroacupuncture analgesia, although 0.1 nmol fluorocitrate alone had no effect on PWLs and PWTs in monoarthritic rats. These results suggested that electroacupuncture and disrupting glial function could synergistically antagonize inflammatory pain, which might provide a potential strategy for the treatment of arthritic pain.


Assuntos
Artrite/patologia , Artrite/terapia , Eletroacupuntura/métodos , Neuroglia/fisiologia , Análise de Variância , Animais , Artrite/complicações , Artrite/etiologia , Citratos/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Adjuvante de Freund , Lateralidade Funcional , Hiperalgesia/etiologia , Hiperalgesia/terapia , Masculino , Neuroglia/efeitos dos fármacos , Dor/etiologia , Manejo da Dor , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Limiar da Dor/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação , Fatores de Tempo
6.
J Neurochem ; 85(3): 571-80, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12694383

RESUMO

The epsilon-isozyme of protein kinase C (PKCepsilon) and the vanilloid receptor 1 (VR1) are both expressed in dorsal root ganglion (DRG) neurons and are reported to be predominantly and specifically involved in nociceptive function. Using phosphospecific antibody against the C-terminal hydrophobic site Ser729 of PKCepsilon as a marker of enzyme activation, the state-dependent activation of PKCepsilon, as well as the expression of VR1 in rat DRG neurons, was evaluated in different experimental pain models in vivo. Quantitative analysis showed that phosphorylation of PKCepsilon in DRG neurons was significantly up-regulated after carrageen- and Complete Freund's Adjuvant-induced inflammation, while it was markedly down-regulated after chronic constriction injury. A double-labeling study showed that phosphorylation of PKCepsilon was expressed predominantly in VR1 immunoreactivity positive small diameter DRG neurons mediating the nociceptive information from peripheral tissue to spinal cord. The VR1 protein expression showed no significant changes after either inflammation or chronic constriction injury. These data indicate that functional activation of PKCepsilon has a close relationship with the production of inflammatory hyperalgesia and the sensitization of the nociceptors. Inflammatory mediator-induced activation of PKCepsilon and subsequent sensitization of VR1 to noxious stimuli by PKCepsilon may be involved in nociceptor sensitization.


Assuntos
Capsaicina/análogos & derivados , Gânglios Espinais/metabolismo , Inflamação/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Proteína Quinase C/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Capsaicina/farmacologia , Carragenina , Modelos Animais de Doenças , Diterpenos , Adjuvante de Freund , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Inflamação/induzido quimicamente , Ligadura , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/fisiopatologia , Dor/induzido quimicamente , Dor/fisiopatologia , Medição da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Fosforilação , Proteína Quinase C-épsilon , Ratos , Ratos Sprague-Dawley , Receptores de Droga/metabolismo
7.
Brain Res ; 966(2): 300-7, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12618353

RESUMO

The interaction between electroacupuncture (EA) and an intrathecally administered wide-spectrum excitatory amino acid (EAA) receptor(s) antagonist, kynurenic acid (KYNA) on carrageenan-induced thermal hyperalgesia and spinal Fos expression was investigated. Intrathecal (i.t.) injection of 0.1, 1, 10, and 100 nmol KYNA markedly and dose-dependently increased the latency of paw withdrawal (PWL) of the carrageenan-injected paw. While the PWLs of the non-injected and normal saline (NS)-injected paws were not obviously affected by application of KYNA at the doses tested. Intrathecal injection of 0.1 nmol KYNA significantly potentiated the anti-nociception induced by EA stimulation of contralateral 'Zu-San-Li' and 'Kun-Lun' acupoints either in the carrageenan- or NS-injected rats. Three hours after intraplantar (i.pl.) injection of carrageenan, the number of Fos-like immunoreactive (Fos-LI) neurons was significantly increased in all layers of ipsilateral spinal cord at L(4)-L(5) with the higher density in laminae I-II and V-VI. Intrathecally pre-administered KYNA (10 nmol) significantly reduced the total number of carrageenan-induced Fos-LI neurons with more apparent reduction in laminae I-II and IV-V. Pre-coapplication of 10 nmol KYNA and EA of bilateral 'Zu-San-Li' and 'Kun-Lun' acupoints, the numbers of carrageenan-induced Fos-LI neurons in laminae I-II and V-VI further reduced. The level of Fos expression in the spinal cord induced by carrageenan was significantly lower compared with that of i.t. injection of KYNA or EA alone. These results demonstrated that EAA receptor(s) antagonist could enhance EA-induced anti-nociception and anti-hyperalgesia.


Assuntos
Eletroacupuntura/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hiperalgesia , Ácido Cinurênico/farmacologia , Proteínas Oncogênicas v-fos/metabolismo , Manejo da Dor , Medula Espinal/efeitos dos fármacos , Animais , Carragenina , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Masculino , Proteínas Oncogênicas v-fos/efeitos dos fármacos , Dor/induzido quimicamente , Dor/fisiopatologia , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Medula Espinal/citologia , Medula Espinal/metabolismo , Fatores de Tempo
8.
Pain ; 99(3): 525-535, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12406529

RESUMO

The interaction between electroacupuncture and an N-methyl-D-aspartic acid (NMDA) receptor antagonist, (DL-2-amino-5-phosphonopentanoic acid; AP5), or an (+/-)-alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainite (AMPA/KA) receptor antagonist, (6,7-dinitroquinoxaline-2,3 (1H,4H); DNQX) administered intrathecally on carrageenan-induced thermal hyperalgesia and spinal c-Fos expression was investigated. The latency of paw withdrawal (PWL) from a thermal stimulus was used as a measure of hyperalgesia in awake rats. Intrathecal (i.t.) injection of 1 and 10 nmol AP5, but not DNQX, markedly increased the PWL of the carrageenan-injected paw. At a dose of 100 nmol, either AP5 or DNQX significantly increased the PWL of carrageenan-injected paw, with AP5 being more potent. The PWLs of the non-injected and normal saline (NS)-injected paws were not detectably affected by the administration of NMDA or AMPA/KA receptor antagonists at the doses tested. Unilateral electroacupuncture stimulation of the 'Zu-San-Li' (St 36) and 'Kun-Lun' (UB 60) acupuncture points (60 and 2 Hz alternately, 1-2-3 mA) contralateral to the carrageenan-injected paw significantly elevated the PWLs of carrageenan- and NS-injected paws. Although neither i.t. injection of 0.1 nmol AP5 nor 1 nmol DNQX alone had an effect on the PWL of the carrageenan- and NS-injected paws, both significantly potentiated electroacupuncture-induced analgesia in carrageenan-injected rats, especially 0.1 nmol AP5. Fos expression evoked by intraplantar (i.pl.) injection of carrageenan was examined in the spinal cord with immunohistochemical methods. Three hours after i.pl. injection of carrageenan, the number of Fos-like immunoreactive (Fos-LI) neurons was significantly increased in all the layers of the ipsilateral spinal cord at L(4-5), with the highest density in laminae I-II and V-VI. Intrathecally pre-administered AP5 (10 nmol) or DNQX (100 nmol) significantly reduced the total number of carrageenan-induced Fos-LI neurons. The reduction was most apparent in laminae I-II and IV-V. Similarly, following bilateral electroacupuncture stimulation of the 'Zu-San-Li' and 'Kun-Lun' acupuncture points, the numbers of carrageenan-induced Fos-LI neurons in laminae I-II and V-VI were also markedly reduced. When a combination of electroacupuncture with 10 nmol AP5 or 100 nmol DNQX was used, the level of Fos expression in the spinal cord induced by carrageenan was significantly lower than electroacupuncture or i.t. injection of AP5 or DNQX alone. These results demonstrate that electroacupuncture and NMDA or AMPA/KA receptor antagonists have a synergetic anti-nociceptive action against inflammatory pain. Furthermore, this study supports the idea that both NMDA and AMPA/KA receptors are involved in spinal nociceptive transmission in carrageenan-inflamed rats, with the former more preferentially mediating transmission of nociceptive information from cutaneous tissue.


Assuntos
Eletroacupuntura/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Genes fos/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Animais , Carragenina , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Genes fos/fisiologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA