Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(44): eadi9980, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910608

RESUMO

Thermoelectric therapy has emerged as a promising treatment strategy for oncology, but it is still limited by the low thermoelectric catalytic efficiency at human body temperature and the inevitable tumor thermotolerance. We present a photothermoelectric therapy (PTET) strategy based on triphenylphosphine-functionalized Cu3VS4 nanoparticles (CVS NPs) with high copper ionic mobility at room temperature. Under near-infrared laser irradiation, CVS NPs not only generate hyperthermia to ablate tumor cells but also catalytically yield superoxide radicals and induce endogenous NADH oxidation through the Seebeck effect. Notably, CVS NPs can accumulate inside mitochondria and deplete NADH, reducing ATP synthesis by competitively inhibiting the function of complex I, thereby down-regulating the expression of heat shock proteins to relieve tumor thermotolerance. Both in vitro and in vivo results show notable tumor suppression efficacy, indicating that the concept of integrating PTET and mitochondrial metabolism modulation is highly feasible and offers a translational promise for realizing precise and efficient cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cobre/química , NAD , Fototerapia/métodos , Neoplasias/terapia , Neoplasias/patologia , Nanopartículas/química , Linhagem Celular Tumoral
2.
J Am Chem Soc ; 145(17): 9488-9507, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36998235

RESUMO

Arming activatable mild-photothermal therapy (PTT) with the property of relieving tumor thermotolerance holds great promise for overcoming traditional mild PTT limitations such as thermoresistance, insufficient therapeutic effect, and off-target heating. Herein, a mitochondria-targeting, defect-engineered AFCT nanozyme with enhanced multi-enzymatic activity was elaborately designed as a tumor microenvironment (TME)-activatable phototheranostic agent to achieve remarkable anti-tumor therapy via "electron transport chain (ETC) interference and synergistic adjuvant therapy". Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the AFCT nanozymes with excellent catalytic activity. In TME, open sources of H2O2 can be achieved by superoxide dismutase-mimicking AFCT nanozymes. In response to the dual stimuli of H2O2 and mild acidity, the peroxidase-mimicking activity of AFCT nanozymes not only catalyzes the accumulation of H2O2 to generate ·OH but also converts the loaded 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) into its oxidized form with strong near-infrared absorption, specifically unlocking its photothermal and photoacoustic imaging properties. Intriguingly, the undesired thermoresistance of tumor cells can be greatly alleviated owing to the reduced expression of heat shock proteins enabled by NADH POD-mimicking AFCT-mediated NADH depletion and consequent restriction of ATP supply. Meanwhile, the accumulated ·OH can facilitate both apoptosis and ferroptosis in tumor cells, resulting in synergistic therapeutic outcomes in combination with TME-activated mild PTT.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Fototerapia/métodos , Peróxido de Hidrogênio , Transporte de Elétrons , NAD , Nanopartículas/uso terapêutico , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Biochem Pharmacol ; 204: 115237, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055381

RESUMO

Dihydroorotate dehydrogenase (DHODH) catalyzes a key step in pyrimidine biosynthesis and has recently been validated as a therapeutic target for malaria through clinical studies on the triazolopyrimidine-based Plasmodium DHODH inhibitor DSM265. Selective toxicity towards Plasmodium species could be achieved because malaria parasites lack pyrimidine salvage pathways, and DSM265 selectively inhibits Plasmodium DHODH over the human enzyme. However, while DSM265 does not inhibit human DHODH, it inhibits DHODH from several preclinical species, including mice, suggesting that toxicity could result from on-target DHODH inhibition in those species. We describe here the use of dihydroorotate (DHO) as a biomarker of DHODH inhibition. Treatment of mammalian cells with DSM265 or the mammalian DHODH inhibitor teriflunomide led to increases in DHO where the extent of biomarker buildup correlated with both dose and inhibitor potency on DHODH. Treatment of mice with leflunomide (teriflunomide prodrug) caused a large dose-dependent buildup of DHO in blood (up to 16-fold) and urine (up to 5,400-fold) that was not observed for mice treated with DSM265. Unbound plasma teriflunomide levels reached 20-85-fold above the mouse DHODH IC50, while free DSM265 levels were only 1.6-4.2-fold above, barely achieving âˆ¼ IC90 concentrations, suggesting that unbound DSM265 plasma levels are not sufficient to block the pathway in vivo. Thus, any toxicity associated with DSM265 treatment in mice is likely caused by off-target mechanisms. The identification of a robust biomarker for mammalian DHODH inhibition represents an important advance to generally monitor for on-target effects in preclinical and clinical applications of DHODH inhibitors used to treat human disease.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Pró-Fármacos , Animais , Biomarcadores , Crotonatos , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Hidroxibutiratos , Leflunomida/farmacologia , Leflunomida/uso terapêutico , Mamíferos/metabolismo , Camundongos , Nitrilas , Plasmodium falciparum/metabolismo , Pró-Fármacos/farmacologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Toluidinas
4.
Behav Brain Res ; 194(1): 108-13, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18655806

RESUMO

Many flavonoids extracted from nature plants have been reported to exert antidepressant-like effect in animal studies. The present study was designed to observe the effects of liquiritin, a flavone compound derived from Glycyrrhiza uralensis, on the behaviors of chronic variable stress induced depression model rats and to explore the possible association between its antidepressant-like effect and antioxidative activity by measuring erythrocyte superoxide dismutase (SOD) activity and plasma malondialdehyde (MDA) level of the experimental animals. With the exposure to stressor once daily for consecutive 5 weeks, liquiritin and a positive control drug fluoxetine were administered via gastric intubation to rats once daily for consecutive 3 weeks from the 3rd week. The results showed that CVS reduced open-field activity and sucrose consumption significantly, but increased immobility time in forced swimming test. Treatment of liquiritin could effectively reverse alteration in immobility time and sucrose consumption but did not show significant effect on open-field activity. Moreover, liquiritin could increase SOD activity, inhibit lipid peroxidation, and lessen production of MDA, while fluoxetine did not. In conclusion, the present study demonstrated a potential antidepressant-like effect of liquiritin treatment on chronic variable stress induced depression model rats, which might be related to defense of liquiritin against oxidative stress.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Flavanonas/uso terapêutico , Glucosídeos/uso terapêutico , Glycyrrhiza uralensis/química , Estresse Psicológico/complicações , Análise de Variância , Animais , Antidepressivos/sangue , Comportamento Animal/efeitos dos fármacos , Depressão/sangue , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Flavanonas/sangue , Preferências Alimentares/efeitos dos fármacos , Glucosídeos/sangue , Masculino , Malondialdeído/metabolismo , Fitoterapia , Extratos Vegetais , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Natação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA