Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Chem ; 11: 1079288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825225

RESUMO

Introduction: Traditional Chinese medicine (TCM) has the advantages of syndrome differentiation and rapid determination of etiology, and many TCM prescriptions have been applied to the clinical treatment of coronavirus disease 2019 (COVID-19). Among them, Jinbei Oral Liquid (Jb.L) has also shown an obvious curative effect in the clinic, but the related material basic research is relatively limited. Methods: Therefore, in this process, a systematic data acquisition and mining strategy was established using ultra-high- performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Results and Discussion: With the optimized conditions, a total of 118 peaks were tentatively characterized, including 43 flavonoids, 26 phenylpropanoids, 14 glycosides, 9 phthalides, 8 alkaloids and others. To determine the content of relevant pharmacological ingredients, we firstly exploited the ultra-performance liquid chromatography method coupled with triple-quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) method for simultaneous detection of 31 active ingredients within 17 min, and the validation of methodology showed that this method has good precision and accuracy. Moreover, analyzing the pharmacology of 31 individual of the medicinal material preliminarily confirmed the efficacy of Jb.L and laid a foundation for an in-depth study of network pharmacology.

2.
PeerJ ; 8: e9913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083108

RESUMO

The MPF and MAPK genes play crucial roles during oocyte maturation processes. However, the pattern of MPF and MAPK gene expression induced by melatonin (MT) and its correlation to oocyte maturation quality during the process of porcine oocyte maturation in vitro remains unexplored. To unravel it, in this study, we cultured the porcine oocytes in maturation medium supplemented with 0, 10-6, 10-9, and 10-12 mol/L melatonin. Later, we analyzed the MPF and MAPK gene expression levels by RT-PCR and determined the maturation index (survival and maturation rate of oocytes). The GSH content in the single oocyte, and cytoplasmic mitochondrial maturation distribution after porcine oocyte maturation in vitro was also evaluated. We also assessed the effects of these changes on parthenogenetic embryonic developmental potential. The oocytes cultured with 10-9mol/L melatonin concentration showed higher oocyte maturation rate, and MPF and MAPK genes expression levels along with better mitochondrial distribution than the 0, 10-6, and 10-12 mol/L melatonin concentrations (p < 0.05). No significant difference was observed in the survival rates when the oocytes were cultured with different melatonin concentrations. The expression of the MPF gene in the oocytes cultured with 10-6 mol/L melatonin was higher than with 10-12 and 0 mol/L melatonin, and the expression of the MAPK gene in 10-6 and 10-12 group was higher than the control (p < 0.05). As far as the embryonic developmental potential is concerned, the cleavage and blastocyst rate of oocytes cultured with 10-6 and 10-9 mol/L melatonin was significantly higher than the 10-12 mol/L melatonin and control. In conclusion, 10-9-10-6 mol/L melatonin significantly induced the MPF and MAPK gene expression; besides, it could also be correlated with GSH content of single oocyte, mitochondrial maturation distribution, and the first polar body expulsion. These changes were also found to be associated with parthenogenetic embryo developmental potential in vitro.

3.
Animals (Basel) ; 10(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012669

RESUMO

Melatonin treatment can improve quality and in vitro development of porcine oocytes, but the mechanism of improving quality and developmental competence is not fully understood. In this study, porcine cumulus-oocyte complexes were cultured in TCM199 medium with non-treated (control), 10-5 M luzindole (melatonin receptor antagonist), 10-5 M melatonin, and melatonin + luzindole during in vitro maturation, and parthenogenetically activated (PA) embryos were treated with nothing (control), or 10-5 M melatonin. Cumulus oophorus expansion, oocyte survival rate, first polar body extrusion rate, mitochondrial distribution, and intracellular levels of reactive oxygen species (ROS) and glutathione of oocytes, and cleavage rate and blastocyst rate of the PA embryos were assessed. In addition, expression of growth differentiation factor 9 (GDF9), tumor protein p53 (P53), BCL2 associated X protein (BAX), catalase (CAT), and bone morphogenetic protein 15 (BMP15) were analyzed by real-time quantitative PCR. The results revealed that melatonin treatment not only improved the first polar body extrusion rate and cumulus expansion of oocytes via melatonin receptors, but also enhanced the rates of cleavage and blastocyst formation of PA embryos. Additionally, melatonin treatment significantly increased intraooplasmic level of glutathione independently of melatonin receptors. Furthermore, melatonin supplementation not only significantly enhanced mitochondrial distribution and relative abundances of BMP15 and CAT mRNA, but also decreased intracellular level of ROS and relative abundances of P53 and BAX mRNA of the oocytes. In conclusion, melatonin enhanced the quality and in vitro development of porcine oocytes, which may be related to antioxidant and anti-apoptotic mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA