Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hortic Res ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043161

RESUMO

The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.

2.
Biol Trace Elem Res ; 200(7): 3315-3325, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34482496

RESUMO

Selenium (Se) is an essential trace element found in the body. Se deficiency and M1/M2 imbalance are closely related to inflammation. Heat stress can decrease immune function and cause inflammation. In order to investigate whether Se deficiency can aggravate pneumonia caused by heat stress and the role of M1/M2 imbalance in the occurrence of pneumonia, 100 AA broilers were divided into two groups and fed the conventional diet (0.2 mg/kg Se) and the Se-deficient diet (0.03 mg/kg Se). After 40 days of feeding, the normal feeding group was randomly divided into a control group and a heat stress group. At the same time, the Se-deficient diet feeding group was randomly divided into a low Se group and a low Se heat stress group, with 25 chickens in each group. The model was established by exposure at 40℃. Six hours later, broilers were euthanized, and their lung tissues were collected. Hematoxylin and eosin staining, immunofluorescence, quantitative real-time PCR, and western blotting were used to detect lung histopathological changes and the expression of M1/M2 markers, nuclear receptor-κB (NF-κB) pathway genes, and heat shock proteins. Meanwhile, the activity and content of oxidative stress-related indices were also detected. We found that the expression of interleukin-1ß, interleukin-6, interleukin-12, and tumor necrosis factor-α was upregulated and the expression of interleukin-2, interleukin-10, and interferon-γ was downregulated. Immunofluorescence showed that the expression of CD16 was increased, the expression of CD163 was weakened, and the M1/M2 imbalance was present. In addition, the NF-κB pathway was activated by the increased expressions of heat shock proteins and oxidative stress. There was an increase in malondialdehyde, nitric oxide, and inducible nitric oxide synthase content, while the activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase decreased, and the expression of NF-κB and cyclooxygenase-2 increased. These results suggest that low Se induces M1/M2 imbalance through oxidative stress activation of the NF-κB pathway and aggravates lung tissue inflammation caused by heat stress. This study offers a theoretical basis for exploring the pathogenesis of various kinds of inflammation induced by Se deficiency from the perspective of M1/M2 and provides a reference for the prevention of such diseases.


Assuntos
Transtornos de Estresse por Calor , Pneumonia , Selênio , Animais , Galinhas/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Inflamação/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Selênio/farmacologia
3.
Toxicology ; 457: 152790, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33891997

RESUMO

Cadmium (Cd), an environmental pollutant, causes several adverse reactions in animals. High dose of Cd has serious cytotoxicities, including the induction of programmed cell necrosis, autophagy and apoptosis, which has aroused wide public concern. The balance of cytokine network is affected by Th1/Th2 balance which is closely related to immune response and the occurrence, development, treatment and outcome of various diseases. Cd can induce severe apoptosis, but the relationship between Cd induced apoptosis and Th1/Th2 balance has not been clarified. In this study, we established a pig Cd poisoning model, exposing to CdCl2 for 40 days (20 mg Cd/kg diet). Firstly, deviation of Th1/Th2 balance was observed by fluorescence staining, and apoptosis was observed by TUNEL staining. Then, real-time fluorescence quantitative analysis and Western blot were used to detect the expression of related proteins. The results show that Cd can interfere with the balance of Th1/Th2 and shift the balance towards Th1. In addition, through the experiments, we found that Cd exposure can increase the expression of glucose-regulated protein 94 (GRP94) and glucose-regulated protein 78 (GRP78), marker proteins of unfolded protein response (UPR). Cd exposure can increase the expression of pancreatic endoplasmic reticulum kinase (PERK), CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring enzyme 1 (IRE-1), activating transcription factor 6 (ATF-6), cysteinyl aspartate specific proteinase (Caspase12), indicating the three branches (ATF6, PERK and IRE-1) of endoplasmic reticulum stress (ER-stress) were activated. Moreover, we found that the expression of pro-apoptosis genes in the downstream pathway of ER-stress increased. In summary, our results indicated that Cd exposure upregulated the expression of pro-apoptosis related genes and caused apoptosis via the activation of the ER-stress signaling pathways in pancreas cells. And these negative effects were correlated with the equilibrium drift of Th1/Th2, increase in the expression and secretion of Th1 cytokines.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Animais , Apoptose/fisiologia , Cádmio/administração & dosagem , Estresse do Retículo Endoplasmático/fisiologia , Masculino , Pâncreas/metabolismo , Pâncreas/patologia , Distribuição Aleatória , Suínos , Células Th1/metabolismo , Células Th1/patologia
4.
Chemosphere ; 258: 127341, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32563067

RESUMO

Cadmium (Cd) is a primary environmental pollutant which causes the immune dysfunction of aquatic animals. MicroRNAs (miRNAs) play a key role in programmed necrosis and apoptosis of immune organs. Selenium (Se), known as an important element, can antagonize Cd toxicity in birds, but the impact of Se on common carps (Cyprinus carpio) has not been reported. To investigate the Cd-induced immunotoxicity mechanism mediated by miR-216a in splenic lymphocytes of common carp and antagonized by Se, we extracted lymphocytes from the spleen and divided them into control group, Se group (10-6 mol/L of Na2SeO3), Se + Cd group and Cd group (4 × 10-5 mol/L of CdCl2). After 6 h of incubation, AO/EB staining, Flow cytometry, qPCR and Western blot were performed. The results showed that Cd exposure caused the apoptosis (BAX, Bcl-2, Caspase 3, Caspase 9) and programmed necrosis (RIP, RIP3, MLKL) in lymphocytes, increased the expression of CYP enzymes, glycometabolism-related enzymes and production of ROS, while irritated the oxidative stress (MDA, SOD, CAT and GSH-PX), upregulated the expression of miR-216a which attenuated the levels of PI3K. However, those variations were apparently mitigated in the Se + Cd group. In short, we have proven that Cd activates oxidative stress and miR-216a-PI3K/AKT axis disorder, thus promoting apoptosis and necrosis in lymphocytes. Moreover, Se can antagonize Cd-triggered apoptosis and necrosis in lymphocytes.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Carpas/metabolismo , Linfócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Animais , MicroRNAs/metabolismo , Necrose/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/metabolismo , Baço/citologia
5.
Metallomics ; 12(4): 562-571, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125337

RESUMO

Multiple tissue necrosis is one of the morphological features of selenium deficiency-mediated injury. MicroRNA (miRNA) participates in the occurrence and development of necroptosis by regulating target genes. Necroptosis is a programmed form of necrosis, and it is closely related to lipopolysaccharide (LPS)-induced injury. Our aim was to investigate whether Se deficiency can promote tracheal injury caused by LPS through miRNA-induced necroptosis. By establishing models of tracheal injury in Se-deficient chickens, we verified the targeting relationship between chicken-derived miR-16-5p and PI3K through bioinformatics, qRT-PCR and WB analyses, and we measured the changes in the expression of genes related to the PI3K/AKT pathway, RIP3/MLKL pathway and MAPK pathway and of heat shock proteins. Under the condition of Se deficiency, the following results were observed: PI3K/AKT expression decreased with the upregulation of miR-16-5p, the expression of necroptosis-related factors (TNF-α, RIP1, FADD, RIP3 and MLKL) increased, and the expression of Caspase 8 significantly decreased (p < 0.05). Light microscopy observations indicated that cell necrosis was the main pathological change due to Se deficiency injury in the tracheal epithelium. The MAPK pathway was activated, and HSP expression was upregulated, indicating that the MAPK pathway and HSPs are both involved in Se deficiency-mediated necroptosis. In addition, Se deficiency promoted the expression of necroptosis-related genes in LPS-treated chickens (p < 0.05), and the pathological changes of cell necrosis were more obvious. In conclusion, we demonstrated that Se deficiency regulates the miR-16-5p-PI3K/AKT pathway and exacerbates LPS-induced necroptosis in chicken tracheal epithelial cells by activating necroptosis-related genes.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Necroptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Selênio/administração & dosagem , Traqueia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Dieta , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/deficiência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Traqueia/citologia , Traqueia/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Biol Trace Elem Res ; 194(2): 525-535, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31325027

RESUMO

Selenomethionine is able to relieve the effect of inflammation in various tissues and organs. However, there are few studies about the influences of organic selenium resisting inflammation induced by LPS in chicken trachea. Therefore, the purpose of this experiment is to explore the organic selenium (selenomethionine) can raise immune function and relieve the LPS-induced inflammation of chicken trachea via inhibiting the NF-κB pathway. To investigate the mechanism of organic selenium on chicken trachea, the supplement of selenomethionine and/or LPS-induced chicken models were established. One hundred 46-week-old isa chickens were randomly divided into four groups (n = 25). The four groups were the control group, the selenomethionine group (Se group), the LPS-induced group (LPS group), and the Se and LPS interaction group (Se + LPS group). Then, the expressions of inflammatory factors (including induced nitric oxide synthase (iNOS), nuclear factor-kappa B(NF-κB), tumor necrosis factor (TNF-α), cyclooxygenase-2 (COX-2), and prostaglandin E (PTGEs) synthase), inflammation-related cytokines (including interleukin (IL-2, IL-6, IL-8, IL-17) and immunoglobulin (IgA, IgM, IgY)), the marker of immune function (avian ß-defensins (AvBD6, AvBD7)), heat shock proteins (including HSP60, HSP90), and selenoproteins (including Selo, Sels, Selm, Selh, Selu, Seli, SPS2, GPx1, GPx2, Dio1, Sepx1, Sep15, Sepp1, Txnrd1) were detected in our experiment. The above genes were significantly changed in different groups (p < 0.05). We can conclude that organic selenium can increase the function of immunity and the expression of selenoproteins, and mitigate the inflammation induced by LPS via suppression of the NF-κB pathway.


Assuntos
Galinhas , Selenometionina , Animais , Galinhas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro , Selenometionina/farmacologia , Traqueia/metabolismo
7.
Biol Trace Elem Res ; 191(2): 474-484, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30737629

RESUMO

DNA methylation is involved in epigenetic mechanisms associated with gene suppression, and its abnormalities lead to gene instability and disease development. As an essential trace element in humans and animals, selenium (Se) is also associated with abnormal changes in DNA methylation. However, the effect of low Se on DNA methylation in avian tissues has not been reported. In the current study, chickens were fed a low-Se diet (0.033 mg Se/kg) or supplemented with 0.15 mg Se/kg as selenite for up to 55 days. DNA methylation levels were examined by high-performance liquid chromatography (HPLC). DNA methyltransferases (DNMTs) and methyl-DpG-binding domain protein 2 (MBD2) mRNA levels were examined through the applications of RT-PCR. The experiment aims to explore the relationship between low Se and DNA methylation. The results showed that total DNA methylation levels in the muscle tissues, brain, immune tissues, and liver of the low-selenium diet group were decreased compared with the control group. The degree of DNA methylation reduction in different tissues from largest to smallest was liver > cerebellum > thymus > brain > spleen ≥ leg muscles > pectoral muscles > bursa of Fabricius > thalamus > wing muscles. DNMT1, DNMT3A, and DNMT3B mRNA expression levels of the low-selenium diet group were decreased compared with those in the control group. The mRNA expression of the MBD2 gene was increased. The results indicate that low Se can reduce the DNA methylation levels of tissues, especially within the liver. These conclusions provide a basis for exploring the pathogenesis of selenium deficiency from the perspective of DNA methylation and create a new basis for comparative medicine.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Selênio/farmacologia , Animais , Galinhas , Cromatografia Líquida de Alta Pressão , Metilação de DNA/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , DNA Metiltransferase 3B
8.
Biol Trace Elem Res ; 191(2): 403-411, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30685819

RESUMO

Selenium (Se) is a trace element in the environment. Although it is a necessary trace element for human and animal health, excessive Se can also pollute the environment and show toxic effects on humans and animals. Since the safe dose range of Se is narrow, it is important to study the pharmacokinetics of Se in order to make better use of the biological effects of Se. In the present study, we investigated the pharmacokinetic process of sodium selenate in healthy piglet plasma after either intramuscular injection or oral administrations, and examined dynamic changes of antioxidant system in healthy piglets after Se supplementation. The results showed that the Se reached the peak concentration of (0.2451 ± 0.0123) µg mL-1 at (0.4237 ± 0.0185) h following intramuscular injection administration and (0.1781 ± 0.0142) µg mL-1 at (2.1517 ± 0.1806) h following oral administration in the plasma. The average AUC of sodium selenite following intramuscular injection and oral administrations was (31.7260 ± 1.3574) and (75.1460 ± 3.4127) mg L-1 h-1, respectively. Total antioxidant capacity (T-AOC), glutathione peroxidase (GPx), and superoxide dismutase (SOD) generally show an upward trend and malondialdehyde (MDA) shows a downward trend, regardless of intramuscular injection or oral sodium selenite. An increased concentration of Se was observed in the serum of healthy piglets after intramuscular injection and oral sodium selenite. Our results indicated that the pharmacokinetic process of sodium selenate in healthy piglet blood conforms to the two-chamber open model. Its pharmacokinetic properties are rapid absorption and slow excretion. Antioxidant systems in healthy piglets vary with Se levels, but there is a significant lag period compared with the latter. Our current findings will provide a more complete understanding of clinical rational Se supplementation and avoid contamination of the environment by overdose.


Assuntos
Selenito de Sódio/farmacocinética , Administração Oral , Animais , Antioxidantes/metabolismo , Injeções Intramusculares , Malondialdeído/sangue , Estresse Oxidativo/efeitos dos fármacos , Selenito de Sódio/administração & dosagem , Selenito de Sódio/farmacologia , Superóxido Dismutase/metabolismo , Suínos
9.
Biol Trace Elem Res ; 190(2): 509-516, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30465172

RESUMO

Selenium (Se) is an essential trace element for humans and animals. Appropriate amount of Se in the body can prevent a variety of diseases. However, Se deficiency leads to pathological changes such as skeletal muscle necrosis and pancreatic atrophy in livestock and poultry. Se preparations are widely used in the prevention and treatment of Se-deficient disease, but there is no unified standard of medication, and the safe dose range of Se is narrow. Therefore, it is of great significance to study the pharmacokinetics of low-Se ducklings and to formulate drug administration schemes. In the present study, eighty 1-day-old healthy ducklings were randomly selected, and fed with low-Se diet to 30 days of age (blood Se content ≦ 0.03 µg/mL). After the low Se duckling models were duplicated, blood samples and tissues of livers, pancreases, and thigh muscles were collected at different time points to detect Se content following oral administration of 0.1% sodium selenite (Na2SeO3) at 0.8 mg/kg BW, and the pharmacokinetics parameters were automatically calculated by MCPKP program. The results showed that pharmacokinetics characteristics of Na2SeO3 in blood, livers, and pancreases of ducklings were consistent with the first-order absorption and two-compartment open models; in thigh muscles was consistent with the first-order absorption and one compartment with a lag time open model. The primary kinetic parameters of Na2SeO3 in blood: the half-life of absorption was 5.9026 h, the time of reaching maximum concentration was 23.03 h, and the half-life of elimination was 131.13 h. The absorption of Na2SeO3 in livers was the quickest, pancreases and thigh muscles were in order of becoming slower, and the elimination of Na2SeO3 in thigh muscles was the quickest, livers and pancreases were in order of becoming slower. The administration parameters of multi-dose were calculated according to the kinetic of single-dose: loading dose (D*) was 1.7046 mg/kg BW, maintenance dose (D0) was 0.8 mg/kg BW, and dosing interval (τ) was 120 h. The results of this study can supplement and improve the theoretical system of Se metabolic kinetics, and provide experimental basis for the prevention and treatment of Se deficiency disease by rational drug use.


Assuntos
Patos , Fígado/química , Músculos/química , Pancrelipase/química , Selênio/sangue , Selênio/deficiência , Selenito de Sódio/administração & dosagem , Selenito de Sódio/farmacocinética , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Selenito de Sódio/sangue , Distribuição Tecidual
10.
Biol Trace Elem Res ; 186(1): 249-257, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29524194

RESUMO

Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays an important role in apoptosis. Exudative diathesis (ED) disease is associated with dietary selenium (Se) deficiency in broilers. The liver is one of the target organs of Se deficiency; however, little is known about the effect of H2S on apoptosis via mitochondrial pathways in the livers of broilers with ED disease. In the present study, we aimed to investigate the correlation between endogenous H2S and mitochondrial-mediated apoptosis in the livers of broilers with ED disease, as induced by Se deficiency. One hundred twenty healthy, 1-day-old broilers were randomly assigned to one of two groups (60 each) based on diet: Basal diet (control group, 0.2 mg/kg Se) or a low-Se diet (-Se group, 0.033 mg/kg Se). At day 20, 15 broilers of a similar weight were sacrificed from the control group, while the same number of broilers were euthanatized from the -Se group when displaying typical symptoms of ED between days 18 and 25. The livers were collected, and apoptosis was measured using a TUNEL assay. Additionally, H2S concentration, the expression of H2S synthases of cystathionine γ-lyase (CSE), cystathionine ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as mitochondrial apoptosis-related genes of Bcl-2, Bax, Bak, Cyt-C, Caspase-9, Caspase-3, and p53, were examined in livers. The results indicated that Se deficiency could induce apoptosis in the livers of broilers. Swelling, fractures, and vacuolization were visible in the mitochondrial cristae in the livers of the -Se group. The expression of H2S synthase-related genes and H2S concentration was significantly enhanced (P < 0.05) in the livers of the -Se group compared to controls. Moreover, a low-Se diet downregulated (P < 0.05) the level of Bcl-2 and upregulated (P < 0.05) the levels of Bax, Bak, Cyt-C, Caspase-9, Caspase-3, and p53. These results suggest that an H2S increase in the livers of ED broilers, which was induced by Se deficiency, is related to apoptosis mediated by mitochondrial pathways.


Assuntos
Apoptose/efeitos dos fármacos , Suscetibilidade a Doenças/patologia , Sulfeto de Hidrogênio/farmacologia , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Selênio/deficiência , Animais , Galinhas , Suplementos Nutricionais , Suscetibilidade a Doenças/metabolismo , Relação Dose-Resposta a Droga , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , Selênio/administração & dosagem , Selênio/farmacologia
11.
Biol Trace Elem Res ; 181(1): 133-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28451783

RESUMO

Increasing evidence indicates that selenium (Se) could antagonize metal toxicity, including cadmium (Cd) toxicity. However, the effects of Se on Cd-induced changes in the ion profile in the pancreas of chickens have not been reported. In the present study, 128 Hy-Line brown laying chickens were divided into the control group, Se-treated group, Se/Cd-treated group, and Cd-treated group, and we detected the concentrations of 28 ions in the four groups by inductively coupled plasma mass spectrometry. In the Cd-treated group, the accumulation of Cd in the pancreas was 836.8 times higher that than in the control group (27,353.71 ppb/32.69 ppb). Meanwhile, the Ca, Ti, Fe, Mo, Li, Al, and Pb levels increased and the Cr, Mn, Ni, Cu, Zn, Se, Sr, and Sb levels decreased due to sub-chronic Cd poisoning. The Fe, Mo, Ba, and Pb levels decreased in the Se/Cd-treated group. Our findings suggest that Cd can accumulate in the chicken pancreas and affect the ion profiles, whereas Se can ameliorate the accumulation of Cd and change the ion profiles in the chicken pancreas.


Assuntos
Cloreto de Cádmio/farmacologia , Pâncreas/efeitos dos fármacos , Selenito de Sódio/farmacologia , Animais , Cloreto de Cádmio/administração & dosagem , Cloreto de Cádmio/análise , Galinhas , Suplementos Nutricionais , Espectrometria de Massas , Selenito de Sódio/administração & dosagem , Selenito de Sódio/análise
12.
Environ Sci Pollut Res Int ; 24(25): 20342-20353, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28707237

RESUMO

Cadmium (Cd) is a toxic heavy metal that can induce apoptosis. Selenium (Se) is a necessary trace element and can antagonize the toxicity of many heavy metals, including Cd. PI3K/AKT/Bcl-2 is a key survival signaling pathway that regulates cellular defense system against oxidative injury as well as cell proliferation, survival, and apoptosis. The antagonistic effects of Se on Cd-induced toxicity have been reported. However, little is known about the effect of Se on Cd-induced apoptosis in chicken kidneys via the PI3K/AKT/Bcl-2 signaling pathway. In the present study, we fed chickens with Se, Cd, or both Se and Cd supplements, and after 90 days of treatment, we detected the related index. The results showed that the activity of inducible nitric oxide synthase (iNOS) and concentration of nitric oxide (NO) were increased; activities of the mitochondrial respiratory chain complexes (complexes I, II, and V) and ATPases (the Na+-K+-ATPase, the Mg2+-ATPase, and the Ca2+-ATPase) were decreased; expression of PI3K, AKT, and Bcl-2 were decreased; and expression of Bax, Bak, P53, Caspase-3, Caspase-9, and cytochrome c (Cyt c) were increased. Additionally, the results of the TUNEL assay showed that the number of apoptotic cells was increased in the Cd group. By contrast, there was a significant improvement of the correlation indicators and occurrence of apoptosis in the Se + Cd group compared to the Cd group. In conclusion, our results confirmed that Se had a positive effect on ameliorating Cd-induced apoptosis in chicken kidney tissue by activating the PI3K/AKT/Bcl-2 signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Galinhas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Selênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Rim/enzimologia , Nefropatias/fisiopatologia , Nefropatias/prevenção & controle , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Óxido Nítrico/análise , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
13.
Biol Trace Elem Res ; 173(1): 177-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26831653

RESUMO

Selenium (Se) is recognized as a necessary trace mineral in animal diets, including those of birds. Lead (Pb) is a toxic heavy metal and can damage organs in humans and animals. Complex antagonistic interactions between Se and heavy metals have been reported in previous studies. However, little is known regarding the effects of Se on Pb-induced toxicity and the expression of inflammatory factors and heat shock proteins (HSPs) in the cartilage of chickens. In this present study, we fed chickens either with Se or Pb or both Se and Pb supplement and later analyzed the mRNA expressions of inflammatory factors (inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and HSPs (Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90). The results showed that Se and Pb influenced the expression of inflammatory factors and HSP genes in the chicken cartilage tissues. Additionally, we also found that antagonistic interaction existed between Se and Pb supplementation. Our findings suggested that Se could exert a antagonistic effect on Pb in chicken cartilage tissues.


Assuntos
Proteínas Aviárias/biossíntese , Cartilagem/metabolismo , Galinhas/metabolismo , Proteínas de Choque Térmico/biossíntese , Mediadores da Inflamação/metabolismo , Chumbo/toxicidade , Selênio/farmacologia , Animais , Cartilagem/patologia
14.
BMC Biochem ; 8: 2, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-17280614

RESUMO

BACKGROUND: We have recently discovered that human type 12 17beta-HSD (h17beta-HSD12), a homolog of type 3 17beta-HSD, is a new estrogen-specific 17beta-hydroxysteroid dehydrogenase involved in the production of estradiol (E2). To further characterize this estradiol-producing enzyme, we have isolated the corresponding cDNA in the cynomolgus monkey (Macaca fascicularis), characterized its enzymatic activities and performed cellular localization using in situ hybridization. RESULTS: Using HEK-293 cells stably expressing Macaca fascicularis type 12 17beta-HSD (mf17beta-HSD12), we have found that the mf17beta-HSD12 catalyzes efficiently and selectively the transformation of El into E2, in analogy with the h17beta-HSD12. We have also quantified the mf17beta-HSD12 mRNA expression levels in a series of Macaca fascicularis tissues using Quantitative RealTime PCR. The Macaca fascicularis 17beta-HSD12 mRNA is widely expressed with the highest levels tissues found in the cerebellum, spleen and adrenal with moderate level observed in all the other examined, namely the testis, ovary, cerebral cortex, liver, heart, prostate, mammary gland, myometrium, endometrium, skin, muscle and pancreas. To gain knowledge about the cellular localization of the mf17beta-HSD12 mRNA expression, we performed in situ hybridization using a 35S-labeled cRNA probe. Strong labeling was observed in epithelial cells and stromal cells of the mammary gland. In the uterus, the labeling is detected in epithelial cells and stromal cells of the endometrium. CONCLUSION: These results strongly suggest that the Macaca fascicularis 17beta-HSD12 is an essential partner of aromatase in the biosynthesis of estradiol (E2). It strongly suggests that in the estradiol biosynthesis pathway, the step of 17-ketoreduction comes after the step of the aromatization (the aromatization of 4-androstendione to estrone followed by the conversion of estrone into estradiol by estrogen specific l7beta-HSDs) which is in contrast with the hypothesis suggesting that 4-androstenedione is converted to testosterone followed by the aromatization of testosterone.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA Complementar/isolamento & purificação , Feminino , Humanos , Hibridização In Situ , Macaca fascicularis , Masculino , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA