Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(68): 10205-10225, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37555438

RESUMO

The elements of the pnictogen group, known as the 15th (VA) family in the periodic table, including phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi), have been widely used by alchemists to treat various diseases since ancient times and hold a pivotal position in the history of medicine, owing to their diverse pharmacological activities. Recently, with the development of modern nanotechnology, pnictogen group elements appear in a more innovative form, namely two-dimensional (2D) pnictogens (i.e. phosphorene, arsenene, and bismuthene) with a unique layered crystal structure and extraordinary optoelectronic characteristics, which endow them with significant superiority as a novel multifunctional photonic nanoplatform for cutting-edge precision treatment of various diseases. The puckered layer structure with ultralarge surface area make them ideal drug and gene delivery vectors that can avoid degradation and reduce target effects. The anisotropic morphology allows their easier internalization by cells and may improve gene transfection efficiency. Tunable optoelectronic characteristics endow them with excellent phototherapy performance as well as the ability to act as an optical switch to initiate subsequent therapeutic events. This review provides a brief overview of the properties, preparation and surface modifications of 2D pnictogens, and then focuses on its applications in cutting-edge precision treatment as a novel multifunctional photonic nanoplatform, such as phototherapy, photonic medicine, photo-adjuvant immunotherapy and photo-assisted gene therapy. Finally, the challenges and future development trends for 2D pnictogens are provided. With a focus on 2D pnictogen-based multifunctional photonic nanoplatforms, this review may also provide profound insights for the next generation innovative precision therapy.


Assuntos
Arsênio , Fototerapia , Fototerapia/métodos , Nanotecnologia/métodos
2.
BMC Neurol ; 20(1): 235, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513122

RESUMO

BACKGROUND: Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsy, which is frequently characterized by hippocampal sclerosis (HS). Accumulating studies have suggested widespread cortico-cortical connections related to MTLE. The role of subcortical structures involved in general epilepsy has been extensively investigated, but it is still limited in MTLE. Our purpose was to determine the specific morphological correlation between sclerotic hippocampal and thalamic sub-regions, using quantitative analysis, in MTLE. METHODS: In this study, 23 MTLE patients with unilateral hippocampal sclerosis and 24 healthy controls were examined with three-dimensional T1 MRI. Volume quantitative analysis in the hippocampus and thalamus was conducted and group-related volumetric difference was assessed. Moreover, vertex analysis was further performed using automated software to delineate detailed morphological patterns of the hippocampus and thalamus. The correlation was used to examine whether there is a relationship between volume changes of two subcortical structures and clinical characteristics. RESULTS: The patients had a significant volume decrease in the sclerotic hippocampus (p < 0.001). Compared to controls, obvious atrophic patterns were observed in the bilateral hippocampus in MTLE (p < 0.05). Only small patches of shrinkage were noted in the bilateral thalamus (p < 0.05). Moreover, the volume change of the hippocampus had a significant positive correlation with that of the thalamus (P < 0.001). Intriguingly, volume changes of the hippocampus and thalamus were correlated with the duration of epilepsy (hippocampus: P = 0.024; thalamus: P = 0.022). However, only volume changes of thalamus possibly differentiated between two prognostic groups in patients (P = 0.026). CONCLUSIONS: We demonstrated the morphological characteristics of the hippocampus and thalamus in MTLE, providing new insights into the interrelated mechanisms between the hippocampus and thalamus, which have potential clinical significance for refining neuromodulated targets.


Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Tálamo , Adolescente , Adulto , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto Jovem
3.
Se Pu ; 38(7): 841-846, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34213292

RESUMO

A method was developed for the determination of nine antioxidants in vegetable oils by high performance liquid chromatography (HPLC). The samples were extracted with methanol, and the fat in the samples was degreased by freezing. Separation of the targeted compounds was performed on an XBridge C18 column in gradient elution mode using methanol-0.1% (v/v) formic acid aqueous solution as the mobile phase. The analytes were detected using a diode-array detector by the external standard method. The stability and storage conditions for the nine antioxidants were systematically investigated. Ascorbyl palmitate (AP) was introduced into the preparation and pre-treatment of the targets. The concentration of AP was optimized to improve the stability and recovery of the targets. The effects of different extraction solvents and purification methods on the extraction efficiencies were discussed. The results showed that the nine antioxidants could be separated well under the optimized conditions. Good linear relationships in the linear range were obtained, and the correlation coefficients (R2) were greater than 0.999. The average recoveries of the nine antioxidants ranged from 85.3% to 104.1%, with RSDs of the method ≤5.0%. The limits of quantitation (LOQs) for the nine synthetic antioxidants were in the range of 0.6-3.0 mg/kg. The method is simple, rapid, sensitive, and it shows good recovery and reproducibility.


Assuntos
Antioxidantes , Análise de Alimentos/métodos , Óleos de Plantas , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Indicadores e Reagentes , Óleos de Plantas/análise , Reprodutibilidade dos Testes
4.
ACS Appl Mater Interfaces ; 9(8): 6712-6724, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28191840

RESUMO

We report here a novel and personalized strategy of selenium/ruthenium nanoparticles modified metal organic frameworks MIL-101(Fe) for delivering pooled small interfering RNAs (siRNAs) to enhance therapy efficacy by silencing multidrug resistance (MDR) genes and interfere with microtubule (MT) dynamics in MCF-7/T (Taxol-resistance) cell. The existence of coordinatively unsaturated metal sites in MIL-101(Fe) can strongly interact with the electron-rich functional groups of cysteine, which can be regarded as the linkage between selenium/ruthenium nanoparticles and MIL-101(Fe). Se@MIL-101 and Ru@MIL-101 loaded with MDR gene-silencing siRNAs via surface coordination can significantly enhance protection of siRNAs against nuclease degradation, increase siRNA cellular uptake, and promote siRNA escape from endosomes/lysosome to silence MDR genes in MCF-7/T cell, resulting in enhanced cytotoxicity through the induction of apoptosis with the signaling pathways of phosphorylation of p53, MAPK, and PI3K/Akt and the dynamic instability of MTs and disrupting normal mitotic spindle formation. Furthermore, in vivo investigation of the nanoparticles on nude mice bearing MCF-7/T cancer xenografts confirmed that Se@MIL-101-(P+V)siRNA nanoparticles can significantly enhance cancer therapeutic efficacy and decrease systemic toxicity in vivo.


Assuntos
Nanopartículas , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Estruturas Metalorgânicas , Camundongos , Camundongos Nus , Paclitaxel , Fosfatidilinositol 3-Quinases , RNA Interferente Pequeno , Rutênio , Selênio
5.
Acta Biomater ; 31: 197-210, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26612416

RESUMO

Drug resistance mediated by P-glycoprotein (P-gp) and class III ß-tubulin (ß-tubulin III) is a major barrier in microtubule-targeting cancer chemotherapy. In this study, layered double hydroxide nanoparticles (LDHs) were employed to simultaneously deliver selenium (Se) and pooled small interfering RNAs (siRNAs) to achieve therapeutic efficacy. LDH-supported Se nanoparticles (Se@LDH) were compacted with siRNAs (anti-P-gp and anti-ß-tubulin III) via electrostatic interactions, which could protect siRNA from degradation. Se@LDH showed excellent abilities to deliver siRNA into cells, including enhancing siRNA internalization, and promoting siRNA escape from endosomes. siRNA transfection experiments further confirmed a higher gene silencing efficiency of Se@LDH than LDH. Interestingly, we found Se@LDH may be a microtubule (MT) stabilizing agent which could inhibit cell proliferation by blocking cell cycle at G2/M phase, disrupting normal mitotic spindle formation and inducing cell apoptosis. When complexed with different specific siRNAs, Se@LDH/siRNA nanoparticles, especially the Se@LDH-pooled siRNAs, exhibit an efficient gene-silencing effect that significantly downregulate the expression of P-gp and ß-tubulin III. Moreover, Se@LDH-pooled siRNAs could induce cell apoptosis, change cell morphology and increase cellular ROS levels through change the expression of Bcl-2/Bax, activation of caspase-3, PI3K/AKT/mTOR and MAPK/ERK pathways. These results suggested that co-delivery of Se and pooled siRNAs may be a promising strategy for overcoming the drug resistance mediated by P-gp and ß-tubulin III in drug-resistant breast cancers.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Nanopartículas Metálicas/química , RNA Interferente Pequeno/administração & dosagem , Selênio/administração & dosagem , Tubulina (Proteína)/química , Anexina A5/química , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Células HEK293 , Células Hep G2 , Humanos , L-Lactato Desidrogenase/química , Células MCF-7 , Microscopia de Fluorescência , Microtúbulos/química , Oxirredução , RNA Interferente Pequeno/química , Espécies Reativas de Oxigênio/química , Selênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fuso Acromático
6.
Nanomedicine ; 11(7): 1773-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25959925

RESUMO

Herein, chiral selenium nanoparticles (L-SeNPs/D-SeNPs) modified with a dinuclear Ruthenium (II) complex were used to effectively deliver siRNA targeting the MDR1 gene. In this co-delivery system, the luminescent dinuclear Ruthenium (II) complex was developed to act as a gene carrier and anti-tumor drug, while offering luminescent imaging to follow the intracellular trafficking. Interestingly, Ru@L-SeNPs exhibited a stronger protein and pDNA affinity than Ru@D-SeNPs, indicating that chirality may have an effect on pDNA/siRNA binding and biocompatibility. Cisplatin-resistant A549R cells treated with Ru@L-SeNPs-siRNA demonstrated significant downregulation of P-glycoprotein (P-gp) expression, resulting in unprecedented enhanced cytotoxicity through the induction of apoptosis with the involvement of phosphorylation of p53, MAPK and PI3K/Akt signaling pathways. In vivo investigation confirmed that Ru@L-SeNPs-siRNA nanoparticles exhibited high tumor-targeted fluorescence, enhanced anti-tumor efficacy, and decreased systemic toxicity. These results suggest that Ru@L-SeNPs are promising vectors for the delivery of siRNA and for real-time tracking of treatment. FROM THE CLINICAL EDITOR: In this study, the authors designed bi-functional selenium nanoparticles with specific chirality to deliver siRNA, for targeting tumor MDR1 gene. The underlying ruthenium (II) complex could also offer fluorescence for real-time imaging. This new system has been shown to have enhanced efficacy against drug resistant tumor cells in both in-vitro and in-vivo experiments.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/administração & dosagem , Neoplasias/terapia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Apoptose/genética , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Nanopartículas/química , Neoplasias/genética , Neoplasias/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Rutênio/química , Selênio/administração & dosagem , Selênio/química
7.
Acta Biomater ; 11: 368-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25204523

RESUMO

Multidrug resistance (MDR) is a major barrier against effective cancer treatment. Dual-delivering a therapeutic small interfering RNA (siRNA) and chemotherapeutic agents has been developed to reverse drug resistance in tumor cells. In this study, amine-terminated generation 5 polyamidoamine (PAMAM) dendrimers (G5.NH2)-modified selenium nanoparticles (G5@Se NP) were synthesized for the systemic dual-delivery of mdr1 siRNA and cisplatin (cis-diamminedichloroplatinum-(II), DDP), which was demonstrated to enhance siRNA loading, releasing efficiency and gene-silencing efficacy. When the mdr1 siRNA was conjugated with G5@Se NP via electrostatic interaction, a significant down-regulation of P-glycoprotein and multidrug resistance-associated protein expression was observed; G5@Se-DDP-siRNA arrested A549/DDP cells at G1 phase and led to enhanced cytotoxicity in A549/DDP cells through induction of apoptosis involving the AKT and ERK signaling pathways. Interestingly, G5@Se-DDP NP were much less reactive than DDP in the reactions with both MT and GSH, indicating that loading of DDP in a nano-delivery system could effectively prevent cell detoxification. Furthermore, animal studies demonstrated that the new delivery system of G5@Se-DDP-siRNA significantly enhanced the anti-tumor effect on tumor-bearing nude mice, with no appreciable abnormality in the major organs. These results suggest that G5@Se NP could be a potential platform to combine chemotherapy and gene therapy technology in the treatment of human disease.


Assuntos
Cisplatino/administração & dosagem , Dendrímeros/química , Nanopartículas Metálicas/química , Nanocápsulas/química , Neoplasias Experimentais/terapia , RNA Interferente Pequeno/administração & dosagem , Selênio/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/química , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inativação Gênica , Terapia Genética/métodos , Humanos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Nus , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/genética , RNA Interferente Pequeno/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA