Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(7): 1571-1587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279012

RESUMO

Dragon's Blood (DB) serves as a precious Chinese medicine facilitating blood circulation and stasis dispersion. Daemonorops draco (D. draco; Qi-Lin-Jie) and Dracaena cochinchinensis (D. cochinchinenesis; Long-Xue-Jie) are two reputable plant sources for preparing DB. This work was designed to comprehensively characterize and compare the metabolome differences between D. draco and D. cochinchinenesis, by integrating liquid chromatography/mass spectrometry and untargeted metabolomics analysis. Offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), by utilizing a powerful hybrid scan approach, was elaborated for multicomponent characterization. Configuration of an XBridge Amide column and an HSS T3 column in offline mode exhibited high orthogonality (A0 0.80) in separating the complex components in DB. Particularly, the hybrid high-definition MSE-high definition data-dependent acquisition (HDMSE-HDDDA) in both positive and negative ion modes was applied for data acquisition. Streamlined intelligent data processing facilitated by the UNIFI™ (Waters) bioinformatics platform and searching against an in-house chemical library (recording 223 known compounds) enabled efficient structural elucidation. We could characterize 285 components, including 143 from D. draco and 174 from D. cochinchinensis. Holistic comparison of the metabolomes among 21 batches of DB samples by the untargeted metabolomics workflows unveiled 43 significantly differential components. Separately, four and three components were considered as the marker compounds for identifying D. draco and D. cochinchinenesis, respectively. Conclusively, the chemical composition and metabolomic differences of two DB resources were investigated by a dimension-enhanced analytical approach, with the results being beneficial to quality control and the differentiated clinical application of DB.


Assuntos
Quimiometria , Metaboloma , Extratos Vegetais , Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos
2.
Nat Commun ; 14(1): 117, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627270

RESUMO

Absence seizures are brief episodes of impaired consciousness, behavioral arrest, and unresponsiveness, with yet-unknown neuronal mechanisms. Here we report that an awake female rat model recapitulates the behavioral, electroencephalographic, and cortical functional magnetic resonance imaging characteristics of human absence seizures. Neuronally, seizures feature overall decreased but rhythmic firing of neurons in cortex and thalamus. Individual cortical and thalamic neurons express one of four distinct patterns of seizure-associated activity, one of which causes a transient initial peak in overall firing at seizure onset, and another which drives sustained decreases in overall firing. 40-60 s before seizure onset there begins a decline in low frequency electroencephalographic activity, neuronal firing, and behavior, but an increase in higher frequency electroencephalography and rhythmicity of neuronal firing. Our findings demonstrate that prolonged brain state changes precede consciousness-impairing seizures, and that during seizures distinct functional groups of cortical and thalamic neurons produce an overall transient firing increase followed by a sustained firing decrease, and increased rhythmicity.


Assuntos
Estado de Consciência , Epilepsia Tipo Ausência , Feminino , Ratos , Humanos , Animais , Estado de Consciência/fisiologia , Roedores , Convulsões , Tálamo , Eletroencefalografia/métodos , Neurônios/fisiologia , Córtex Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA