Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Transl Sci ; 14(4): 1390-1402, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33650299

RESUMO

Selenium (Se) is an essential trace element in human. Recent studies of Se supplementation on the effect of Hashimoto's thyroiditis (HT) have been reported, but the exact benefit is unclear as well as the underlying immunologic mechanism. We aimed to evaluate the clinical effect of Se supplement in patients with HT, and explore the potential mechanism against thyroid autoimmunity. A prospective, randomized-controlled study was performed in patients with HT assigned to two groups. Se-treated group (n = 43) received selenious yeast tablet (SYT) for 6 months, whereas no treatment in control group (n = 47). The primary outcome is the change of thyroid peroxidase antibody (TPOAb) or thyroglobulin antibody (TGAb). Second, thyroid function, urinary iodine, Se, Glutathione peroxidase3 (GPx3), and Selenoprotein P1 (SePP1) levels were measured during the SYT treatment. Meanwhile, regulatory T cells (Tregs) and their subsets activated Tregs (aTregs), resting Tregs, and secreting Tregs, as well as Helios and PD-1 expression on these cells were also detected. The results showed that SYT treatment significantly decreased TPOAb, TGAb, and thyroid stimulating hormone (TSH) levels, accompanied with the increased Se, GPx3, and SePP1, compared with the control group. Subgroup analysis revealed that subclinical HT may benefit more from this treatment in the decrease of TSH levels by interaction test. Moreover, the percentage of aTregs, Helios/Tregs, and Helios/aTregs were significantly higher in the Se-treated group than control. In conclusion, Se supplementation may have a beneficial effect on thyroid autoantibodies and thyroid function by increasing the antioxidant activity and upregulating the activated Treg cells.


Assuntos
Doença de Hashimoto/dietoterapia , Selênio/administração & dosagem , Linfócitos T Reguladores/imunologia , Oligoelementos/administração & dosagem , Adulto , Autoanticorpos/sangue , Autoanticorpos/imunologia , Suplementos Nutricionais , Feminino , Doença de Hashimoto/imunologia , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/imunologia , Resultado do Tratamento
2.
Int J Oncol ; 37(2): 307-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20596658

RESUMO

Current chemotherapy with doxorubicin fails to eradicate anaplastic thyroid cancer or even to stop tumor progress which may be due to the failure of these drugs to effectively target putative cancer stem cells. To test this hypothesis, anaplastic thyroid cell lines were characterized by FACS for their content of cancer stem cells, their in vitro sphere-forming capacity and their expression of multidrug resistance transporters of the ABC gene family which may confer drug resistance to the cells. Cells were treated with doxorubicin in short-term and long-term culture up to 6 months to establish a resistant cell line. The survival of cancer and cancer stem cells and the differential expression of transporters were analyzed. Anaplastic thyroid cancer cell lines that consisted of 0.4-0.8% side population cells, expressed ABCG2 and multi-drug-resistant 1 (MDR1) transporters. Treatment with doxorubicin gradually killed the non-side population of cancer cells derived from anaplastic thyroid carcinoma cells. This conferred a growth advantage to cancer stem cells which in turn overgrew the culture. Resistant cell line consisted of a 70% side population fraction enriched with Oct4-positive cancer stem cells. Inhibition of ABCG2 and/or MDR1 revealed that resistance of cancer stem cells to doxorubicin may be mainly due to the expression of these ABC transporters that were highly up-regulated in the resistant subline. The poor outcome of chemotherapy with doxorubicin in anaplastic thyroid carcinoma may be partly explained by up-regulation of ABCG2 and MDR1 transporters that confers resistance to cancer stem cells. Thus an effective treatment of anaplastic thyroid cancer has not only to destroy cancer cells that represent the bulk of tumor cell population but also cancer stem cells that may drive tumor progression.


Assuntos
Carcinoma/patologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neoplasias da Glândula Tireoide/patologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA