Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Reprod Immunol ; 153: 103666, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970081

RESUMO

Recurrent spontaneous abortion (RSA) is a disturbing pregnancy disorder experienced by ~2.5% of women attempting to conceive. The pathogenesis of RSA is still unclear. Previous findings revealed that transcription factor YIN-YANG 1(YY1) was related to the pathogenesis of RSA by influence trophoblastic cell invasion ability. Present study aimed to investigate more specific molecular mechanism of YY1 playing in trophoblastic cells. In our research, RNA-seq and Chip-seq were used to find significant changed genes between si-YY1(Knock down of YY1) HTR-8/SVneo cells(n = 3) and HTR-8/SVneo cells(n = 3). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results suggested that Integrins related pathway maybe necessary to biological functions of trophoblastic cells. Chip-seq dataset analysis results predict YY1 can regulate ITGA3/7 expression by binding to the promoter region of ITGA3/7. Furthermore, results from chip experiment, RT-PCR, Dual-luciferase reporter gene assay showed that YY1 was able to bind to the promoter region of ITGA3 and regulate ITGA3 mRNA and protein expression. However, ITGA7 could not be significant influenced by YY1. Besides, gene silencing experiment, Western blot and Immunofluorescence assay confirmed that both YY1 and ITGA3 can accelerate phosphorylation focal adhesion kinase and affect cytoskeleton formation in HTR-8/SVneo cells. In conclusion, YY1/ITGA3 play a critical role in trophoblast invasion ability by regulating cytoskeleton formation.


Assuntos
Aborto Habitual , Citoesqueleto , Integrina alfa3 , Trofoblastos , Fator de Transcrição YY1 , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Movimento Celular/genética , Proliferação de Células/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina alfa3/genética , Integrina alfa3/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
2.
Lab Chip ; 21(20): 4005-4015, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34476431

RESUMO

Rapid and personalized single-cell drug screening testing plays an essential role in acute myeloid leukemia drug combination chemotherapy. Conventional chemotherapeutic drug screening is a time-consuming process because of the natural resistance of cell membranes to drugs, and there are still great challenges related to using technologies that change membrane permeability such as sonoporation in high-throughput and precise single-cell drug screening with minimal damage. In this study, we proposed an acoustic streaming-based non-invasive single-cell drug screening acceleration method, using high-frequency acoustic waves (>10 MHz) in a concentration gradient microfluidic device. High-frequency acoustics leads to increased difficulties in inducing cavitation and generates acoustic streaming around each single cell. Therefore, single-cell membrane permeability is non-invasively increased by the acoustic pressure and acoustic streaming-induced shear force, which significantly improves the drug uptake process. In the experiment, single human myeloid leukemia mononuclear (THP-1) cells were trapped by triangle cell traps in concentration gradient chips with different cytarabine (Ara-C) drug concentrations. Due to this dual acoustic effect, the drugs affect cell viability in less than 30 min, which is faster than traditional methods (usually more than 24 h). This dual acoustic effect-based drug delivery strategy has the potential to save time and reduce the cost of drug screening, when combined with microfluidic technology for multi-concentration drug screening. This strategy offers enormous potential for use in multiple drug screening or efficient drug combination screening in individualized/personalized treatments, which can greatly improve efficiency and reduce costs.


Assuntos
Acústica , Leucemia Mieloide Aguda , Permeabilidade da Membrana Celular , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Humanos
3.
J Cell Physiol ; 235(10): 6637-6646, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32003019

RESUMO

Insufficient trophoblast invasion is the key factor for the occurrence of recurrent spontaneous abortions (RSA). Our previous studies identified Yin Yang 1 (YY1) as a transcription factor involved in the regulation of trophoblast invasiveness at the maternal-fetal interface. Long noncoding RNAs (lncRNAs) can regulate gene expression and autophagy in many ways. The purpose of this study was to explore the relationship between YY1 and lncRNAs and the mechanism by which lncRNAs affect the biological behavior of trophoblasts. Bioinformatic analysis predicted that YY1 had three binding sites in the plasmacytoma variant translocation 1 (PVT1) promoter region. Chromatin immunoprecipitation experiments and electrophoretic mobility shift assays verified that YY1 can directly bind to the PVT1 promoter. Compared with its expression levels in human placental villi tissue samples from the normal pregnancy group, the PVT1 expression levels were significantly lower in tissues from the RSA group. PVT1 knockdown significantly reduced adhesion, invasion, autophagy, and mTOR expression in HTR-8/SVneo cells and greatly increased apoptosis in vitro. This study revealed a novel regulatory pathway in which YY1 can act directly on PVT1 promoter to regulate its transcription, which further affects trophoblast invasion and adhesion by regulating autophagy via the mTOR pathway, and these effects might be involved in RSA pathogenesis.


Assuntos
Autofagia/genética , Adesão Celular/genética , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Trofoblastos/fisiologia , Fator de Transcrição YY1/genética , Aborto Habitual/genética , Adulto , Apoptose/genética , Autofagia/fisiologia , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Gravidez , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , Adulto Jovem
4.
J Nanosci Nanotechnol ; 16(3): 2401-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455648

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in spherical shape with -10 nm diameter. Possessing ideal magnetic inductive heating characteristics, which can generate very rapid and efficient heating while upon AMF exposure, 2-DG-SPIONs can be applied as novel candidature of magnetic nanothermotherapy for cancer treatment. Modification of 2-DG can greatly promote the cell uptake of SPIONs and such cellular uptake of 2-DG-SPIONs was time dependent. Surface coating by 2-DG can remarkably enhance the MR imaging ability for the SPIONs on the cells of U251 cancer cells. In summary, our investigation provides a novel glucose analogue modified SPIONs with potential application in the targeting cancer nanothermotherapy and MR imaging.


Assuntos
Desoxiglucose/química , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Magnetismo , Nanopartículas , Animais , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA