Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 181: 114136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448105

RESUMO

To achieve an integrative understanding of the spatial distribution and chronological flavoring compounds accumulation, desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) and multi-omics techniques were performed on the leaf samples collected from the enzymatic-catalyzed-process (ECP) stage of Tieguanyin oolong tea manufacturing. The result of DESI-MSI visualization indicated transform or re-distribution of catechins, flavonols and amino acids were on-going attributing to the multi-stress over ECP stage. Out of identified 2621 non-volatiles and 45,771 transcripts, 43 non-volatiles and 12 co-expressed pathways were screened out as biomarkers and key cascades in response to adverse conditions. The targeted metabolic analysis on the characteristic flavoring compounds showed that the accumulations of free amino acids were enhanced, while catechins, flavonol glycosides, and alkaloids exhibited dynamic changes. This result suggests withering and turning-over process are compatible and collectively regulate the metabolic accumulation and development of flavoring metabolites, facilitating to the development of characteristic quality of Tieguanyin tea.


Assuntos
Aminoácidos , Catequina , Comércio , Flavonóis , Aromatizantes , Catálise , Chá
2.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3956-3972, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36305421

RESUMO

To explore the mechanism of tea albino variation and high theanine formation, 'Fuyun 6' and a new theanine-rich tea cultivar 'Fuhuang 2' were as materials in this study, pigment content, metabolome and transcriptome of the two cultivars were analyzed by ultramicroelectron microscopy, widely targeted metabolomics, targeted metabolomics and transcriptomics. The results showed that five catechins, theobromine, caffeine, and 20 free amino acids, including theanine, glutamine, arginine, etc., were identified by targeted metabolomics. The amino acid content of 'Fuhuang 2' was significantly higher than that of 'Fuyun 6', and the theanine content was as high as 57.37 mg/g in 'Fuhuang 2'. The ultrastructure of leaves showed that the chloroplast cell structure of 'Fuhuang 2' was fuzzy, most of the grana lamellae were arranged in disorder, with large gaps, and the thylakoids were filiform. The determination of pigments showed that compared with 'Fuyun 6', the contents of chlorophyll A and B, carotenoids, flavonoids and other pigments of 'Fuhuang 2' decreased significantly, some important pigment-related-genes, such as chlorophyllase (CLH), 9-cis-epoxycarotenoid dioxygenase (NCED), flavonoid 3ß-hydroxylase (F3H) and flavonoid 3', 5'-hydroxylase (F3'5'H) were significantly changed. Compared with 'Fuyun 6', 'Fuhuang 2' identified 138 significantly changed metabolites (SCMs) and 658 differentially expressed genes (DEGs). KEGG enrichment analysis showed that SCMs and DEGs were significantly enriched in amino acid biosynthesis, glutathione metabolism and TCA cycle. In general, the albino phenotype of 'Fuhuang 2' may be caused by a deficiency in photosynthetic proteins, chlorophyll metabolism genes and chlorophyll content. The accumulation of high theanine in 'Fuhuang 2' may be due to the low nitrogen consumption in yellowed leaves and the lack of carbon skeleton, amino and nitrogen resources are stored more effectively, resulting in the up regulation of metabolites and related gene expression in the amino acid synthesis pathway, theanine has become a significant accumulation of nitrogen-containing compounds in yellowed leaves.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Clorofila A/análise , Clorofila A/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/química , Clorofila/análise , Clorofila/metabolismo , Transcriptoma , Flavonoides/análise , Flavonoides/metabolismo , Aminoácidos/genética , Chá , Oxigenases de Função Mista/metabolismo , Nitrogênio/metabolismo
3.
PeerJ ; 10: e13453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722255

RESUMO

Fatty acid derived volatiles (FADVs) are major contributors to the aroma quality of oolong tea (Camellia sinensis). Most of the processing time for oolong tea is taken up by turning over treatments, but the full profile of fatty acid metabolic changes during this process remains unclear. In this study, we detected fatty acids, their derived volatiles, and related genes of Tieguanyin oolong tea using biochemical and molecular biology methods. The results showed that with an increase in turning over intensities, the content of total unsaturated fatty acids continuously dropped and the content of characteristic FADVs, such as hexanoic acid (Z)-3-Hexenly ester and 2-exenal, continued to increase. Lipoxygenase (LOX), a key gene family in the fatty acid metabolic pathway, showed different patterns, and CsLOX1 (TEA025499.1) was considered to be a key gene during the turning over processes. We found that fruit-like aroma (Z)-3-Hexen-1-ol acetate had a strong correlation with the expression levels of eight Camelia sinensis LOX family genes. Tieguanyin had relatively rich pleasant volatile compounds with moderate turning over intensity (five times turning over treatments). This study provides an overall view of how fatty acid metabolites change and affect the quality of oolong tea with different turning over intensities during processing.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Ácidos Graxos/análise , Compostos Orgânicos Voláteis/análise , Folhas de Planta/química , Chá/química
4.
J Sci Food Agric ; 102(9): 3730-3741, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34919290

RESUMO

BACKGROUND: Lipids are one of the most important bioactive compounds, affecting the character and quality of tea. However, the contribution of lipids to tea productions is still elusive. Here, we systematically identified the lipid profiles of green, oolong, and black teas in purple-leaf tea (Jinmingzao, JMZ) and green-leaf tea (Huangdan, HD), respectively. RESULTS: The lipids analysis showed regular accumulation in tea products with different manufacturing processes, among which the fatty acids, glycerolipids, glycerophospholipids, and sphingolipids contribute to the quality characteristics of tea products, including typical fatty acyl (FA), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerols (DGDG), and phosphatidylcholine (PC). Compared tea materials with products, levels of fatty acids were up-regulated, while glycerolipids and glycerophospholipids were down-regulated in tea products. FA 18:3, FA 16:0, MGDG 36:6, DGDG 36:6, PC 34:3, and PC 36:6 were the negative contributors to green tea flavor formation of purple-leaf tea. The pathway analysis of significant lipids in materials and products of purple-leaf tea were enriched linolenic acid metabolism pathway and glycerolipid metabolism. CONCLUSION: This study provides insights into the lipid metabolism profiles of different tea leaf colors, and found that fatty acids are essential precursors of black tea flavor formation. © 2021 Society of Chemical Industry.


Assuntos
Lipidômica , Folhas de Planta , Ácidos Graxos/análise , Glicerofosfolipídeos/metabolismo , Folhas de Planta/química , Chá/química
5.
Genomics ; 113(3): 1565-1578, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33819564

RESUMO

MYB transcription factors play essential roles in many biological processes and environmental stimuli. However, the functions of the MYB transcription factor family in tea plants have not been elucidated. Here, a total of 122 CsR2R3-MYB genes were identified from the chromosome level genome of tea plant (Camellia sinensis). The CsR2R3-MYB genes were phylogenetically classified into 25 groups. Results from the structure analysis of the gene, conserved motifs, and chromosomal distribution supported the relative conservation of the R2R3-MYB genes family in the tea plant. Synteny analysis indicated that 122, 34, and 112 CsR2R3-MYB genes were orthologous to Arabidopsis thaliana, Oryza sativa and C. sinensis var. 'huangdan' (HD), respectively. Tissue-specific expression showed that all CsR2R3-MYB genes had different expression patterns in the tea plant tissues, indicating that these genes may perform diverse functions. The expression patterns of representative R2R3-MYB genes and the regulatory network of the main anthocyanin components were analyzed, which suggested that CsMYB17 may played a key role in the regulation of cya-3-O-gal, del-3-O-gal, cya-3-O-glu and pel-3-O-glu. Results from the qRT-PCR validation of selected genes suggested that CsR2R3-MYB genes were induced in response to drought, cold, GA, and ABA treatments. Overall, this study provides comprehensive and systematic information for research on the function of R2R3-MYB genes in tea plants.


Assuntos
Camellia sinensis , Fatores de Transcrição , Sequência de Aminoácidos , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromossomos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
6.
Plant Physiol Biochem ; 160: 27-36, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454634

RESUMO

Tea varieties with specific colours have often been studied by researchers. However, previous studies on the albinism of tea plants have mostly been based on plants with different genetic backgrounds or focused on common components in albino tea leaves, such as amino acids, flavones, and carotenoids. In this study, we conducted widely targeted metabolic and transcriptomic analyses between a wildtype tea genotype (Shuixian, LS) and its albino mutant (Huangjinshuixian, HS). At the molecular level, alteration of gene expression levels in the MEP pathway may have reduced the production of chlorophyll and carotenoids in HS, which could be the main cause of the phenotypic changes in HS. At the metabolite level, a large number of metabolites related to light protection that significantly accumulated in HS, including flavones, anthocyanins, flavonols, flavanones, vitamins and their derivatives, polyphenols, phenolamides. This result, combined with an enzyme activity experiment, suggested that the absence of photosynthetic pigments made the albino tea leaves of HS more vulnerable to UV stress, even under normal light conditions. In addition, except for the common amino acids, we also identified numerous nitrogen-containing compounds, including nucleotides and their derivates, amino acid derivatives, glycerophospholipids, and phenolamides, which implied that significant accumulation of NH4+ in albino tea leaves could not only promote amino acid synthesis but could also activate other specialized metabolic pathways related to nitrogen metabolism. In conclusion, our results provide new information to guide further studies of the extensive metabolic reprogramming events caused by albinism in tea plants.


Assuntos
Camellia sinensis , Metaboloma , Pigmentação/genética , Transcriptoma , Camellia sinensis/genética , Carotenoides , Clorofila , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética
7.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545190

RESUMO

Purple-leaf tea is a phenotype with unique color because of its high anthocyanin content. The special flavor of purple-leaf tea is highly different from that of green-leaf tea, and its main ingredient is also of economic value. To probe the genetic mechanism of the phenotypic characteristics of tea leaf color, we conducted widely targeted metabolic and transcriptomic profiling. The metabolites in the flavonoid biosynthetic pathway of purple- and green-leaf tea were compared, and results showed that phenolic compounds, including phenolic acids, flavonoids, and tannins, accumulated in purple-leaf tea. The high expression of genes related to flavonoid biosynthesis (e.g., PAL and LAR) exhibits the specific expression of biosynthesis and the accumulation of these metabolites. Our result also shows that two CsUFGTs were positively related to the accumulation of anthocyanin. Moreover, genes encoding transcription factors that regulate flavonoids were identified by coexpression analysis. These results may help to identify the metabolic factors that influence leaf color differentiation and provide reference for future research on leaf color biology and the genetic improvement of tea.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides/biossíntese , Pigmentação/fisiologia , Antocianinas/genética , Antocianinas/metabolismo , Vias Biossintéticas/genética , Camellia sinensis/fisiologia , Catequina/metabolismo , China , Cor , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Taninos/genética , Taninos/metabolismo , Chá/metabolismo , Transcriptoma
8.
BMC Plant Biol ; 20(1): 98, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131737

RESUMO

BACKGROUND: Shoot orientation is important for plant architecture formation, and zigzag-shaped shoots are a special trait found in many plants. Zigzag-shaped shoots have been selected and thoroughly studied in Arabidopsis; however, the regulatory mechanism underlying zigzag-shaped shoot development in other plants, especially woody plants, is largely unknown. RESULTS: In this study, tea plants with zigzag-shaped shoots, namely, Qiqu (QQ) and Lianyuanqiqu (LYQQ), were investigated and compared with the erect-shoot tea plant Meizhan (MZ) in an attempt to reveal the regulation of zigzag-shaped shoot formation. Tissue section observation showed that the cell arrangement and shape of zigzag-shaped stems were aberrant compared with those of normal shoots. Moreover, a total of 2175 differentially expressed genes (DEGs) were identified from the zigzag-shaped shoots of the tea plants QQ and LYQQ compared to the shoots of MZ using transcriptome sequencing, and the DEGs involved in the "Plant-pathogen interaction", "Phenylpropanoid biosynthesis", "Flavonoid biosynthesis" and "Linoleic acid metabolism" pathways were significantly enriched. Additionally, the DEGs associated with cell expansion, vesicular trafficking, phytohormones, and transcription factors were identified and analysed. Metabolomic analysis showed that 13 metabolites overlapped and were significantly changed in the shoots of QQ and LYQQ compared to MZ. CONCLUSIONS: Our results suggest that zigzag-shaped shoot formation might be associated with the gravitropism response and polar auxin transport in tea plants. This study provides a valuable foundation for further understanding the regulation of plant architecture formation and for the cultivation and application of horticultural plants in the future.


Assuntos
Camellia sinensis/genética , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Transcriptoma , Camellia sinensis/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/genética
9.
Sci Rep ; 10(1): 2792, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066857

RESUMO

The JASMONATE-ZIM DOMAIN (JAZ) family genes are key repressors in the jasmonic acid signal transduction pathway. Recently, the JAZ gene family has been systematically characterized in many plants. However, this gene family has not been explored in the tea plant. In this study, 13 CsJAZ genes were identified in the tea plant genome. Phylogenetic analysis showed that the JAZ proteins from tea and other plants clustered into 11 sub-groups. The CsJAZ gene transcriptional regulatory network predictive and expression pattern analyses suggest that these genes play vital roles in abiotic stress responses, phytohormone crosstalk and growth and development of the tea plant. In addition, the CsJAZ gene expression profiles were associated with tea postharvest processing. Our work provides a comprehensive understanding of the CsJAZ family and will help elucidate their contributions to tea quality during tea postharvest processing.


Assuntos
Proteínas de Arabidopsis/genética , Camellia sinensis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Repressoras/genética , Estresse Fisiológico/genética , Arabidopsis/genética , Camellia sinensis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Reguladores de Crescimento de Plantas
10.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627263

RESUMO

C-repeat binding factors (CBFs) are key signaling genes that can be rapidly induced by cold and bind to the C-repeat/dehydration-responsive motif (CRT/DRE) in the promoter region of the downstream cold-responsive (COR) genes, which play a vital role in the plant response to low temperature. However, the CBF family in tea plants has not yet been elucidated, and the possible target genes regulated by this family under low temperature are still unclear. In this study, we identified five CsCBF family genes in the tea plant genome and analyzed their phylogenetic tree, conserved domains and motifs, and cis-elements. These results indicate that CsCBF3 may be unique in the CsCBF family. This is further supported by our findings from the low-temperature treatment: all the CsCBF genes except CsCBF3 were significantly induced after treatment at 4 °C. The expression profiles of eight tea plant tissues showed that CsCBFs were mainly expressed in winter mature leaves, roots and fruits. Furthermore, 685 potential target genes were identified by transcriptome data and CRT/DRE element information. These target genes play a functional role under the low temperatures of winter through multiple pathways, including carbohydrate metabolism, lipid metabolism, cell wall modification, circadian rhythm, calcium signaling, transcriptional cascade, and hormone signaling pathways. Our findings will further the understanding of the stress regulatory network of CsCBFs in tea plants.


Assuntos
Camellia sinensis/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Sítios de Ligação , Temperatura Baixa , Sequência Conservada , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia
11.
Molecules ; 24(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533323

RESUMO

Tea aroma is a key indicator for evaluating tea quality. Although notable success in tea aroma improvement has been achieved with heterosis breeding technology, the molecular basis underlying heterosis remains largely unexplored. Thus, the present report studies the tea plant volatile heterosis using a high-throughput next-generation RNA-seq strategy and gas chromatography-mass spectrometry. Phenotypically, we found higher terpenoid volatile and green leaf volatile contents by gas chromatography-mass spectrometry in the F1 hybrids than in their parental lines. Volatile heterosis was obvious in both F1 hybrids. At the molecular level, the comparative transcriptomics analysis revealed that approximately 41% (9027 of 21,995) of the genes showed non-additive expression, whereas only 7.83% (1723 of 21,995) showed additive expression. Among the non-additive genes, 42.1% showed high parental dominance and 17.6% showed over-dominance. Among different expression genes with high parental dominance and over-dominance expression patterns, KEGG and GO analyses found that plant hormone signal transduction, tea plant physiological process related pathways and most pathways associated with tea tree volatiles were enriched. In addition, we identified multiple genes (CsDXS, CsAATC2, CsSPLA2, etc.) and transcription factors (CsMYB1, CsbHLH79, CsWRKY40, etc.) that played important roles in tea volatile heterosis. Based on transcriptome and metabolite profiling, we conclude that non-additive action plays a major role in tea volatile heterosis. Genes and transcription factors involved in tea volatiles showing over-dominance expression patterns can be considered candidate genes and provide novel clues for breeding high-volatile tea varieties.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Metaboloma , Transcriptoma , Compostos Orgânicos Voláteis/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vigor Híbrido , Metabolômica , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo
12.
Planta ; 250(5): 1671-1686, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31410553

RESUMO

MAIN CONCLUSION: Genome-wide identification and characterization of nuclear factor-Y family in tea plants, and their expression profiles and putative targets provide the basis for further elucidation of their biological functions. The nuclear factor-Y (NF-Y) transcription factors (TFs) are crucial regulators of plant growth and physiology. However, the NF-Y TFs in tea plant (Camellia sinensis) have not yet been elucidated, and its biological functions, especially the putative target genes within the genome range, are still unclear. In this study, we identified 35 CsNF-Y encoding genes in the tea plant genome, including 10 CsNF-YAs, 15 CsNF-YBs and 10 CsNF-YCs. Their conserved domains and motifs, phylogeny, duplication event, gene structure, and promoter were subsequently analyzed. Tissue expression analysis revealed that CsNF-Ys exhibited three distinct expression patterns in eight tea tree tissues, among which CsNF-YAs were moderately expressed. Drought and abscisic acid (ABA) treatment indicated that CsNF-YAs may have a greater impact than other subunit members. Furthermore, through the genome-wide investigation of the presence of the CCAAT box, we found that CsNF-Ys may participate in the development of tea plants by regulating target genes of multiple physiological pathways, including photosynthesis, chlorophyll metabolism, fatty acid biosynthesis, and amino acid metabolism pathways. Our findings will contribute to the functional analysis of NF-Y genes in woody plants and the cultivation of high-quality tea plant cultivars.


Assuntos
Ácido Abscísico/metabolismo , Fator de Ligação a CCAAT/metabolismo , Camellia sinensis/genética , Genoma de Planta/genética , Reguladores de Crescimento de Plantas/metabolismo , Fator de Ligação a CCAAT/genética , Secas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
13.
Genes Genomics ; 41(1): 17-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30238224

RESUMO

The WRKY transcription factors (TFs) family is one of the largest TF families in plants and plays a central role in diverse regulation and multiple stress responses. However, the systematical analysis of the WRKY gene family in tea plant (Camellia sinensis) based on genomic data has been lacking. The primary objective of this study was to set a systematic analysis of the WRKY gene family based on genomic data in tea plant and analyze their expression profiles under various abiotic stresses. We searched the tea plant genome using the consensus model of the WRKY domain (PF03106) and then used these search results to identify all the WRKY family members by SMART and the CDD program. Analyze their phylogeny, classification, structure, conserved motifs, Cis-elements, interactors and expression profiles. 56 putative WRKY genes were identified from the tea plant genome and divided into three main groups (I-III) and five subgroups (IIa-IIe) according to the WRKY domains and the zinc-finger structure. The gene structure and conserved motifs of the CsWRKY genes were also characterized and were consistent with the classification results. Annotation analysis showed that 34 CsWRKY genes may be involved in stress responses. Promoter analysis implied that CsWRKY genes, except for CsWRKY55, possessed at least one abiotic stress response cis-element. Expression profiles of CsWRKY genes in different tissues were analyzed with RNA-seq data. The results showed that 56 CsWRKY genes had differential expression in their transcript abundance. The expression profiles also showed that many identified CsWRKY genes were possibly involved in the response to cold, drought, salt, or ABA treatment. Tea plant genome contains at least 56 WRKY genes. These results provide useful information for further exploring the function and regulatory mechanism of CsWRKY genes in the growth, development, and adaption to abiotic stresses in tea plant.


Assuntos
Camellia sinensis/genética , Proteínas de Plantas/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Genoma de Planta , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Int J Mol Sci ; 19(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380795

RESUMO

The SQUAMOSA promoter binding protein (SBP)-box gene family is a plant-specific transcription factor family. This family plays a crucial role in plant growth and development. In this study, 20 SBP-box genes were identified in the tea plant genome and classified into six groups. The genes in each group shared similar exon-intron structures and motif positions. Expression pattern analyses in five different tissues demonstrated that expression in the buds and leaves was higher than that in other tissues. The cis-elements and expression patterns of the CsSBP genes suggested that the CsSBP genes play active roles in abiotic stress responses; these responses may depend on the abscisic acid (ABA), gibberellic acid (GA), and methyl jasmonate (MeJA) signaling pathways. Our work provides a comprehensive understanding of the CsSBP family and will aid in genetically improving tea plants.


Assuntos
Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/biossíntese , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Camellia sinensis/genética , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/genética , Giberelinas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA