Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int Immunopharmacol ; 123: 110764, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573685

RESUMO

As a common clinical disease, neuropathic pain is difficult to be cured with drugs. The occurrence and progression of pain is closely related to the response of spinal microglia. Aspartof the regulation of microglialactivity,PD-L1 playsacriticalrole. Loss of PD-L1 promoted the polarization of M1-like microglia. Increased expression of PD-L1 promoted M2-like polarization. Electroacupuncture has a significant analgesic effect in clinical practice, but its specific mechanism remains to be further explored. In this study, we verified the role of PD-L1 in EA analgesia and the underlying molecular mechanism through spinal nerve ligation (SNL) in rats and lipopolysaccharide (LPS)-treated BV2 microglial cells. Forbehavioralstudiesofrats,mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured, and spinal cord neuros were examined under transmission electron microscopyto determine changes to their myelin structure. The expression levels of PD-L1 and M1/M2-specific markers in rat spinal cord and BV2 microglial cells were measured by enzyme-linked immunosorbent assay, flow cytometry, immunofluorescence staining and Western blot analysis. Our study showed that EA increased the pain threshold, reduced the destruction of myelin structure, promoted the expression of PD-L1 and PD-1, inhibited the MAPK signaling pathway, and promoted the conversion of microglial polarization from the M1 phenotype to the M2 phenotype in SNL rats. PD-L1 knockdown reversed these effects of EA. In addition, PD-L1 knockdown activated the MAPK signaling pathway, promoted microglial polarization to the M1 phenotype, decreased the expression of anti-inflammatory mediators and increased the expression of proinflammatory factors in LPS-stimulated BV2 microglial cells. Our results showed that EA may regulate the excitability of primary afferent neurons through PD-L1 and then inhibit the MAPK signaling pathway to promote the transformation of activated M1 microglia into M2 microglia, reduce inflammatory reactions, and finally achieve analgesic effects. A therapy targeting PD-L1 may be an effective strategy for treating neuropathic pain.


Assuntos
Eletroacupuntura , Neuralgia , Ratos , Animais , Microglia , Lipopolissacarídeos/farmacologia , Antígeno B7-H1/metabolismo , Nervos Espinhais , Neuralgia/terapia , Neuralgia/metabolismo , Analgésicos/farmacologia
2.
Biol Res ; 56(1): 26, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211600

RESUMO

Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.


Assuntos
Eletroacupuntura , Neuralgia , Animais , Ratos , Espinhas Dendríticas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Neuralgia/metabolismo , Neuralgia/terapia , Proteínas rac1 de Ligação ao GTP/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Nervos Espinhais/metabolismo
3.
Biol. Res ; 56: 26-26, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1513738

RESUMO

Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.


Assuntos
Animais , Ratos , Eletroacupuntura , Neuralgia/metabolismo , Neuralgia/terapia , Nervos Espinhais/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/metabolismo , Espinhas Dendríticas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo
4.
Front Physiol ; 13: 961909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160853

RESUMO

Electroacupuncture (EA) has both anti-inflammatory and cardio-protective effects. Activation of calpain pathway is involved in several myocardiopathy. In sepsis, the role of calpain-2-regulated STAT3 in cardio-protective mechanism of electroacupuncture remains unclear. In this study, we aimed to elucidate the mechanism by which electroacupuncture reduces cardiac inflammation and apoptosis and improves cardiac function during sepsis. Electroacupuncture pretreatment for 7 days was applied in septic cardiomyopathy model induced by lipopolysaccharide (LPS). lipopolysaccharide-induced sepsis was associated with a dramatically systemic inflammation and cardiac dysfunction, which was alleviated by electroacupuncture pre-treatment. Lipopolysaccharide resulted in increases of pro-inflammatory factors (TNF-α,IL1ßand IL-6) and apoptosis (TUNEL staining and BAX/Bcl2) via activation of calpain-2/STAT3 pathway.Electroacupuncture pre-treatment inhibited LPS-induced activation of cardiac calpain-2/STAT3 signalling and ameliorated inflammatory and apoptosis. Additionally, inhibition of calpain-2 expression using the corresponding siRNA decreased the Phosphorylation of STAT3,pro-inflammatory factors and apoptosis in lipopolysaccharide- treated cardiomyocytes, confirming that calpain-2 activated p-STAT3 participate in septic cardiomyopathy. Furthermore, suppression of STAT3 by stattic enhanced anti-inflammatory and anti-apoptosis effects of electroacupuncture. These findings reveal mechanisms of electroacupuncture preconditioning protection against cardiac inflammation and apoptosis in sepsis mouse via calpain-2/STAT3 pathway and may provide novel targets for clinical treatments of the sepsis-induced cardiac dysfunction.

5.
Org Biomol Chem ; 14(2): 631-638, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26541578

RESUMO

The histone methyltransferase MLL1 has been linked to translocation-associated gene fusion in childhood leukemias and is an attractive drug target. High-throughput biochemical analysis of MLL1 methyltransferase activity requires the production of at least a trimeric complex of MLL1, RbBP5 and WDR5 to elicit robust activity. Production of trimeric and higher order MLL1 complexes in the quantities and reproducibility required for high-throughput screening presents a significant impediment to MLL1 drug discovery efforts. We present here a small molecule fluorescent ligand (FL-NAH, 6) that is able to bind to the S-adenosylmethionine (SAM) binding site of MLL1 in a manner independent of the associated complex members. We have used FL-NAH to develop a fluorescence polarization-based SAM displacement assay in a 384-well format targeting the MLL1 SET domain in the absence of associated complex members. FL-NAH competes with SAM and is displaced from the MLL1 SET domain by other SAM-binding site ligands with Kdisp values similar to the higher-order complexes, but is unaffected by the H3 peptide substrate. This assay enables screening for SAM-competitive MLL1 inhibitors without requiring the use of trimeric or higher order MLL1 complexes, significantly reducing screening time and cost.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Fluorescência , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/metabolismo , S-Adenosilmetionina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/economia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligantes , Estrutura Molecular , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Fatores de Tempo
6.
J Med Chem ; 55(18): 7978-87, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22928876

RESUMO

Protein arginine methyltransferases (PRMTs) are proved to play vital roles in chromatin remodeling, RNA metabolism, and signal transduction. Aberrant regulation of PRMT activity is associated with various pathological states such as cancer and cardiovascular disorders. Development and application of small molecule PRMT inhibitors will provide new avenues for therapeutic discovery. The combination of pharmacophore-based virtual screening methods with radioactive methylation assays provided six hits identified as inhibitors against the predominant arginine methyltransferase PRMT1 within micromolar potency. Two potent compounds, A9 and A36, exhibited the inhibitory effect by directly targeting substrate H4 other than PRMT1 and displayed even higher inhibition activity than the well-known PRMT inhibitors AMI-1. A9 significantly inhibits proliferation of castrate-resistant prostate cancer cells. Together, A9 may be a potential inhibitor against advanced hormone-independent cancers, and the work will provide clues for the future development of specific compounds that block the interaction of PRMTs with their targets.


Assuntos
Arginina/metabolismo , Inibidores Enzimáticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Interface Usuário-Computador , Sequência de Aminoácidos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Metilação/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores
7.
Bioconjug Chem ; 20(2): 360-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19146394

RESUMO

Histone acetyltransferases (HATs) are an important class of epigenetic enzymes involved in chromatin restructuring and transcriptional regulation. We describe in this paper a novel approach for the identification and characterization of HAT inhibitors using both fluorescence resonance energy transfer (FRET) and fluorescence polarization. Expressed protein ligation (EPL) was used to label HATs PCAF and p300 with Dabcyl (Dab) as FRET acceptors. Methoxycoumarin (Mca) is conjugated to HAT substrate analogues to function as fluorescent donors, namely, H3CoA20Mca for interacting with PCAF and LysCoAMca for p300. When a ligand-protein interaction occurs, the fluorescent intensity of the donor fluorophore decreases due to FRET quenching by the Dab acceptor. Meanwhile, the formation of ligand-protein complexes causes reduction of the molecular mobility of the donor fluorophore, resulting in increased fluorescence anisotropy. Thus, dual modes of fluorescence measurement, FRET and anisotropy, are integrated in the same assay system. In particular, we demonstrated that both FRET and anisotropy measurements can be used to effectively detect and characterize HAT inhibitors. The developed strategy should be useful in the search of new anticancer drugs that target the substrate interfaces of the HAT targets, as well as find values in mechanistic study of HATs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Fluorescência , Histona Acetiltransferases/antagonistas & inibidores , Sequência de Aminoácidos , Ligação Competitiva , Cumarínicos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA