Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836816

RESUMO

The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Prata , Humanos , Estreptavidina , Oligonucleotídeos , Cátions , Ensaios Enzimáticos/métodos , Peroxidase do Rábano Silvestre , Água , Limite de Detecção
2.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769313

RESUMO

The combination of recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a strong diagnostic tool for rapid pathogen detection in resource-limited conditions. Here, we compared two methods generating labeled RPA amplicons following their detection by LFT: (1) the basic one with primers modified with different tags at the terminals and (2) the nuclease-dependent one with the primers and labeled oligonucleotide probe for nuclease digestion that was recommended for the high specificity of the assay. Using both methods, we developed an RPA-LFT assay for the detection of worldwide distributed phytopathogen-alfalfa mosaic virus (AMV). A forward primer modified with fluorescein and a reverse primer with biotin and fluorescein-labeled oligonucleotide probe were designed and verified by RPA. Both labeling approaches and their related assays were characterized using the in vitro-transcribed mRNA of AMV and reverse transcription reaction. The results demonstrated that the RPA-LFT assay based on primers-labeling detected 103 copies of RNA in reaction during 30 min and had a half-maximal binding concentration 22 times lower than probe-dependent RPA-LFT. The developed RPA-LFT was successfully applied for the detection of AMV-infected plants. The results can be the main reason for choosing simple labeling with primers for RPA-LFT for the detection of other pathogens.


Assuntos
Vírus do Mosaico da Alfafa/isolamento & purificação , Nicotiana/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos/química , Doenças das Plantas/virologia , Recombinases/metabolismo , Solanum tuberosum/virologia , Vírus do Mosaico da Alfafa/genética , Bioensaio , Recombinases/genética , Transcrição Reversa , Proteínas Virais/genética
3.
Talanta ; 225: 121961, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592716

RESUMO

We report the approach for the detection of Au@Pt core@shell nanoparticles (nanozymes) with peroxidase-mimicking activity (PMA) in samples with high endogenous peroxidase activity (EPA). Unlike the endogenous peroxidases in plant extracts that are inhibited by elevated H2O2 (>20 mM), the PMA of nanozymes was stable in concentrated H2O2 (up to 4 M). Such a different stability of enzymes and Au@Pt to the substrate allowed for eliminating EPA and detecting only nanozymes. The developed approach was used for reaching a lower limit of detection (LOD) and eliminating the background for the lateral flow immunoassay (LFIA) of the important plant pathogen potato virus X (PVX) in leaf and tuber extracts. Using the PMA of Au@Pt, the LOD was reduced to 4 and 8 pg/mL in tuber and leaf extracts, respectively. The LOD values are 250- and 500-times lower in comparison with LFIA with conventional gold nanoparticles. The developed approach of peroxidases inhibition is universal for bioanalytical methods, and its applicability was confirmed by the elimination of EPA in three matrixes (serum, potato leaf and tuber extracts).


Assuntos
Nanopartículas Metálicas , Ouro , Humanos , Peróxido de Hidrogênio , Imunoensaio , Peroxidase , Peroxidases , Peróxidos , Platina
4.
Mol Cell Probes ; 53: 101622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569728

RESUMO

Dickeya solani, one of the most significant bacterial pathogens, infects potato plants, resulting in severe economic damage. In this study, a lateral flow assay (LFA) combined with isothermal DNA amplification was developed for rapid, specific, and sensitive diagnosis of the potato blackleg disease caused by D. solani. Recombinase polymerase amplification (RPA) was chosen for this purpose. Five primer pairs specific to different regions of the D. solani genome were designed and screened. A primer pair providing correct recognition of the target sequence was aligned with the SOL-C region specific to D. solani and flanked by fluorescein (forward primer) and biotin (reverse primer). Lateral flow test strips were constructed to detect DNA amplicons. The RPA-LFA demonstrated a detection limit equal to 14,000 D. solani colony-forming units per gram of potato tuber. This assay provided sensitivity corresponding to the polymerase chain reaction (PCR) but was implemented at a fixed temperature (39 °C) over 30 min. No unspecific reactions with Pectobacterium, Clavibacter, and other Dickeya species were observed. Detection of latent infection of D. solani in the potato tubers by the developed RPA-LFA was verified by PCR. The obtained results confirmed that RPA-LFA has great potential for highly sensitive detection of latent infection.


Assuntos
Dickeya/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Recombinases/metabolismo , Solanum tuberosum/microbiologia , Primers do DNA/química , DNA Bacteriano/genética , Dickeya/genética , Fluorescência , Limite de Detecção , Plasmídeos/genética
5.
Talanta ; 195: 739-744, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625610

RESUMO

This study presents new type of the lateral flow immunoassay (LFIA) for multi-target analysis. A test, named alarm-LFIA, has an essentially new function that consists in notice (signaling the danger) about the presence at least one target from the controlled list without identification. The design of the alarm-LFIA assumes one test zone, which contains a mixture of antibodies, and multi-specific conjugate that binds the several targets. The alarm test is based on the novel conjugate with broaden specificity due to the immobilisation of a mix of antibodies, specific to several structurally different targets, on the surface of gold nanoparticles. For proof of concept, multi-specific conjugate to five important potato viruses (potato virus X, -M, -S, -Y and potato leaf roll virus) was fabricated using five antibodies with different specificity. The alarm-LFIA was developed for rapid detection of the total infection caused by up to five viruses. Detection limits of the viruses in potato leaf extracts are from 10 to 30 ng/mL. The alarm-LFIA was successfully used for viruses' detection in potato leaves; results were confirmed by enzyme-linked immunosorbent assay. The proposed approach of alarm-LFIA shows great potential for the various cases when different targets of interest can occur simultaneously or separately in samples.


Assuntos
Extratos Vegetais/análise , Folhas de Planta/virologia , Vírus de Plantas/isolamento & purificação , Solanum tuberosum/virologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Ouro/química , Imunoensaio , Nanopartículas Metálicas/química , Vírus de Plantas/imunologia
6.
Sensors (Basel) ; 18(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445792

RESUMO

A simple approach was proposed to decrease the detection limit of sandwich lateral flow immunoassay (LFIA) by changing the conditions for binding between a polyvalent antigen and a conjugate of gold nanoparticles (GNPs) with antibodies. In this study, the potato virus Y (PVY) was used as the polyvalent antigen, which affects economically important plants in the Solanaceae family. The obtained polyclonal antibodies that are specific to PVY were characterized using a sandwich enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). For LFIA, the antibodies were conjugated with GNPs with a diameter of 17.4 ± 1.0 nm. We conducted LFIAs using GNP conjugates in a dried state on the test strip and after pre-incubation with a sample. Pre-incubating the GNP conjugates and sample for 30 s was found to decrease the detection limit by 60-fold from 330 ng∙mL-1 to 5.4 ng∙mL-1 in comparison with conventional LFIA. The developed method was successfully tested for its ability to detect PVY in infected and uninfected potato leaves. The quantitative results of the proposed LFIA with pre-incubation were confirmed by ELISA, and resulted in a correlation coefficient of 0.891. The proposed approach is rapid, simple, and preserves the main advantages of LFIA as a non-laboratory diagnostic method.


Assuntos
Anticorpos/imunologia , Antígenos/isolamento & purificação , Técnicas Biossensoriais , Potyvirus/isolamento & purificação , Anticorpos/química , Antígenos/imunologia , Ensaio de Imunoadsorção Enzimática , Imunoconjugados/química , Limite de Detecção , Nanopartículas Metálicas/química , Potyvirus/patogenicidade , Solanum tuberosum/virologia , Ressonância de Plasmônio de Superfície
7.
Mikrochim Acta ; 185(11): 506, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30328535

RESUMO

This article demonstrates a new kind of a highly sensitive lateral flow immunoassay (LFIA). It is based on the enlargement of the size of gold nanoparticles (GNPs) directly on the test strip after a conventional LFIA. Particle size enlargement is accomplished through the catalytic reduction of HAuCl4 in the presence of H2O2 and through the accumulation of additional gold on the surface of the GNPs. To attain maximal enhancement of the coloration of the zone in the test strip and to achieve a minimal background, the concentration of precursors, the pH value, and the incubation time were optimized. GNPs on the test strip are enlarged from 20 to 350 nm after a 1-min treatment at room temperature. The economically important and widespread phytopathogen potato virus X (PVX) was used as the target analyte. The use of the GNP enlargement method results in a 240-fold reduction in the limit of the detection of PVX, which can be as low as 17 pg·mL-1. The total duration of the assay, including virus extraction from the potato leaves, lateral flow, and the enhancement process, is only 12 min. The diagnostic efficiency of the technique was confirmed by its application to the analysis of potato leave samples. No false positives or false negatives were found. The technique does not depend on specific features of the target analyte, and it is conceivably applicable to numerous GNP-based LFIAs for important analytes. Graphical abstract An enlargement solution (containing HAuCl4 and H2O2) was dripped on the strip after common lateral flow immunoassay. Gold nanoparticles on the strip (20 nm) catalyze gold reduction and the formation of larger particles (up to 350 nm), resulting in a 240-fold lower detection limit within 1 min.


Assuntos
Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/ultraestrutura , Potexvirus/isolamento & purificação , Limite de Detecção , Nanopartículas Metálicas/química , Tamanho da Partícula , Folhas de Planta/virologia , Solanum tuberosum/virologia
8.
Biotechnol Lett ; 39(5): 751-758, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28150075

RESUMO

OBJECTIVE: To develop a high-sensitivity immunochromatographic test for fumonisin B1 in plant extracts. RESULTS: Unlike conventional immunochromatographic tests, this assay is performed in two stages: competitive reaction with free specific antibodies and identifying immune complexes by their interaction with the anti-species antibody-conjugated gold nanoparticles. The use of a new geometry for the test strip membranes and a novel reagent application method ensures the proper order of these stages without additional manipulations. The contact of the ready-to-use test strip with the liquid sample suffices in initiating all stages of the assay and obtaining test results. The developed test was used on corn extracts; its instrumental limit of fumonisin B1 detection was 0.6 ng ml-1 at 15 min of assay duration. CONCLUSIONS: The proposed approach is flexible and can be used for a wide range of low molecular compounds. The use of anti-species antibody-conjugated gold nanoparticles in immunochromatography significantly facilitates the development of test systems by eliminating the need to synthesize and characterize the conjugates with specific antibodies for each new compound to be detected.


Assuntos
Anticorpos Imobilizados/metabolismo , Cromatografia de Afinidade/métodos , Fumonisinas/análise , Fumonisinas/metabolismo , Anticorpos Imobilizados/química , Ensaio de Imunoadsorção Enzimática , Desenho de Equipamento , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Extratos Vegetais/química , Zea mays/química
9.
Anal Bioanal Chem ; 409(7): 1915-1927, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28012109

RESUMO

Early detection of potato infections is essential for effective disease management. The aim of this study was to develop a lateral flow immunoassay (LFIA) for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani. Polyclonal antibodies specific to different strains of Dickeya were obtained from rabbits after immunization with bacterial cells of D. dianthicola and D. solani. Enzyme-linked immunosorbent assay testing with use of a wide range of bacterial species showed that the polyclonal antibodies detect closely related strains of D. dianthicola and D. solani. Cross-reactivity with widespread pathogenic bacteria (nine species) and saprophytes of healthy potato plants was not detected. The LFIA based on the obtained antibodies and gold nanoparticles with average diameter of 20 nm was developed. Under optimized conditions, the LFIA method enabled the analysis of potato extracts within 10 min, with a visual limit of detection of 1 × 105 CFU/ml for leaves and 4 × 105 CFU/ml for tubers. The assay was tested on potato stem and tuber extracts, and the results of the LFIA were confirmed in 92.1% of samples using the real-time polymerase chain reaction. The findings confirmed that the developed LFIA could be used for monitoring blackleg infection without the need for special equipment or skills. Graphical Abstract The developed lateral flow immunoassay is an efficient tool for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani.


Assuntos
Gammaproteobacteria/patogenicidade , Imunoensaio/métodos , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Gammaproteobacteria/imunologia , Microscopia Eletrônica de Transmissão
10.
Anal Bioanal Chem ; 408(22): 6009-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27007732

RESUMO

Multiarray on a test strip (MATS) was developed for the detection of eight important potato pathogens. The proposed assay combines the rapidity of immunochromatography with the high throughput of array techniques. The test zone of the immunochromatographic strip comprises ordered rows of spots containing antibodies specific for different potato pathogens. The assay benefits from the simplicity of immunochromatography; colored immune complexes form at the corresponding spots within the test zone. The presence and intensity of the coloration are used for identification of the target pathogens. The MATS was applied to the simultaneous detection of eight priority potato pathogens, characterized by the following limits of detection: 1 ng/mL for potato virus X and the ordinary type of potato virus Y, 10 ng/mL for potato virus M, 20 ng/mL for potato leaf roll virus, 40 ng/mL for necrotic-type potato virus Y, 100 ng/mL for potato virus S, 300 ng/mL for potato virus A, and 10(4) cells/mL for Clavibacter michiganensis subsp. sepedonicus. Analysis time was 15 min. The observed sensitivity of the MATS was comparable to the traditional enzyme-linked immunosorbent assay. The developed technique was tested on potato leaf extracts, and its efficiency for on-site control of the pathogens was confirmed in 100 % by commercial LFIA test strips. Graphical abstract Location of binding zones in the developed multiarray on a test strip (MATS) for simultaneous detection of eight pathogens.


Assuntos
Cromatografia de Afinidade/métodos , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Fitas Reagentes/análise , Solanum tuberosum/virologia , Anticorpos Imobilizados/química , Cromatografia de Afinidade/economia , Cromatografia de Afinidade/instrumentação , Desenho de Equipamento , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Análise Serial de Proteínas/economia , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos
11.
Talanta ; 152: 521-30, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26992550

RESUMO

Ralstonia solanacearum is a dangerous and economically important pathogen of potatoes and other agricultural crops. Therefore, rapid and sensitive methods for its routine diagnostics are necessary. The aim of this study was to develop a rapid control method for R. solanacearum with a low limit of detection (LOD) based on a lateral flow immunoassay (LFIA) with silver enhancement. To minimize the LOD, the membrane type, antibody amount for conjugation with gold nanoparticles, conjugate concentration and antibody concentration in the analytical zone were optimized. Silver enhancement was used to decrease the LOD of the LFIA. For silver enhancement, release fiberglass membranes with pre-absorbed silver lactate and hydroquinone were placed on the analytical zone, and a drop of silver lactate was added. The LFIA with silver enhancement was found to be 10-fold more sensitive (LOD 2×10(2) CFU/mL; 20 min) in comparison with the common analysis (LOD 2×10(3) CFU/mL; 10 min). The specificity of the developed LFIA was studied using different strains of R. solanacearum (54 samples) and other widespread bacterial pathogens (18 samples). The LFIA detected all tested strains, whereas non-specific reactions were not observed. The developed tests were used for the control of bacteria in extracts of infected and non-infected potato tubers, and the quantitative analysis results (based on the densitometry of line colouration) were confirmed by ELISA with a correlation coefficient equal to 0.965.


Assuntos
Imunoensaio/métodos , Limite de Detecção , Ralstonia solanacearum/isolamento & purificação , Prata/química , Solanum tuberosum/microbiologia , Membranas Artificiais , Nanopartículas Metálicas/química , Ralstonia solanacearum/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA