Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 69(7): 1239-1247, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31744910

RESUMO

OBJECTIVE: Dietary fibre has beneficial effects on energy metabolism, and the majority of studies have focused on short-chain fatty acids produced by gut microbiota. Ginseng has been reported to aid in body weight management, however, its mechanism of action is not yet clear. In this study, we focused on the potential modulating effect of ginseng on gut microbiota, aiming to identify specific strains and their metabolites, especially long-chain fatty acids (LCFA), which mediate the anti-obesity effects of ginseng. DESIGN: Db/db mice were gavaged with ginseng extract (GE) and the effects of GE on gut microbiota were evaluated using 16S rDNA-based high throughput sequencing. To confirm the candidate fatty acids, untargeted metabolomics analyses of the serum and medium samples were performed. RESULTS: We demonstrated that GE can induce Enterococcus faecalis, which can produce an unsaturated LCFA, myristoleic acid (MA). Our results indicate that E. faecalis and its metabolite MA can reduce adiposity by brown adipose tissue (BAT) activation and beige fat formation. In addition, the gene of E. faecalis encoding Acyl-CoA thioesterases (ACOTs) exhibited the biosynthetic potential to synthesise MA, as knockdown (KD) of the ACOT gene by CRISPR-dCas9 significantly reduced MA production. Furthermore, exogenous treatment with KD E. faecalis could not reproduce the beneficial effects of wild type E. faecalis, which work by augmenting the circulating MA levels. CONCLUSIONS: Our results demonstrated that the gut microbiota-LCFA-BAT axis plays an important role in host metabolism, which may provide a strategic advantage for the next generation of anti-obesity drug development.


Assuntos
Tecido Adiposo Marrom/metabolismo , Enterococcus faecalis/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Obesidade/metabolismo , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Panax , Extratos Vegetais/farmacologia , RNA Ribossômico 16S/genética
2.
Biomed Chromatogr ; 32(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28986996

RESUMO

Panax ginseng is widely consumed as a functional food in the form of tea, powder, capsules, among others, and possesses a range of pharmacological activities including adaptogenic, immune-modulatory, anti-tumor, anti-aging and anti-inflammatory effects. The aim of this study was to identify and quantify the major ginsenosides and their metabolites in rat plasma, urine and feces after administration of P. ginseng extract using LC-MS/MS. We collected rat plasma samples at 0.5, 1, 2, 4, 8, 12, 24 and 48 h, and the amounts of urine and fecal samples accumulated in 24 h. Fourteen major ginsenosides and their metabolites were observed in fecal samples at high levels; however, low levels of 11 ginsenosides were detected in urine samples. The pharmacokinetics of the major ginsenosides and their metabolites was investigated in plasma. The results indicated that the maximum plasma concentration, time to maximum concentration and area under the curve of compound K were significantly greater than those of other ginsenosides. This study thus provides valuable information for drug development and clinical application of P. ginseng.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Fezes/química , Ginsenosídeos/análise , Ginsenosídeos/farmacocinética , Panax , Administração Oral , Animais , Cromatografia Líquida/métodos , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Limite de Detecção , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
3.
J Agric Food Chem ; 65(2): 327-337, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28025886

RESUMO

Following oral intake of Panax ginseng, major ginsenosides are metabolized to deglycosylated ginsenosides by gut microbiota before absorption into the blood. As the composition of gut microbiota varies between individuals, metabolic activities are significantly different. We selected 6 rats with low efficiency metabolism (LEM) and 6 rats with high efficiency metabolism (HEM) from 60 rats following oral administration of Panax ginseng extract, and analyzed their gut microbiota composition using Illumina HiSeq sequencing of the 16S rRNA gene. The components of gut microbiota between the LEM and HEM groups were significantly different. Between the 2 groups, S24-7, Alcaligenaceae, and Erysipelotrichaceae occupied most OTUs of the HEM group, which was notably higher than the LEM group. Furthermore, we isolated Bifidobacterium animalis GM1 that could convert the ginsenoside Rb1 to Rd. The result implies that these specific intestinal bacteria may dominate the metabolism of Panax ginseng.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos/farmacocinética , Inativação Metabólica , Panax , Administração Oral , Animais , Colo/efeitos dos fármacos , Colo/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Ginsenosídeos/análise , Ginsenosídeos/metabolismo , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , RNA Ribossômico 16S , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
4.
Biotechnol Lett ; 38(7): 1187-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27060008

RESUMO

OBJECTIVE: To study the ß-glucosidase gene (bgy1) from Lactobacillus brevis that was cloned and expressed in Escherichia coli BL21 (DE3) and then using it for the biotransformation of gypenoside XVII. RESULTS: The bgy1 gene consists of 2283 bp encoding 761 amino acids, with homology to the glycosyl hydrolase family-3 protein domain. The enzyme (Bgy1) hydrolyzed the glucose moieties at the C-3 position and the outer glucose moieties at the C-20 position of gypenoside XVII. Using 0.1 mg enzyme ml(-1) in 20 mM sodium phosphate buffer at 30 °C and pH 6.0, 1 mg gypenoside XVII ml(-1) was transformed into 0.58 mg compound K ml(-1) within 6 h, with a corresponding molar conversion yield of 89 %. CONCLUSION: The recombinant Bgy1 is considered potentially useful for the practical preparation of compound K.


Assuntos
Ginsenosídeos/metabolismo , beta-Glucosidase/metabolismo , Biotransformação , Gynostemma/metabolismo , Extratos Vegetais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Glucosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA