Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res ; 52(4): 762-73, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11033560

RESUMO

Topographies of a bioactive glass (45S5 type Bioglass(R)) during 0-4 h of immersion in a supersaturated calcifying solution (SCS) and the SCS containing recombinant porcine amelogenin rP172 (SCS(rP172)) were observed by atomic force microscopy. Other techniques including X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, and transmission electron microscopy were used for some complementary microstructural investigations. The smooth Bioglass surface changed to be very rough after 0.5 h of SCS immersion because of glass network dissolution. Spherical silica-gel particles with diameters of 150-300 nm consisting of substructures of 20-60 nm across had formed on the sample surfaces after 1 h of SCS immersion. The chemisorption of amorphous calcium phosphate and crystallization of nanophase apatite were seen to occur epitaxially on the silica-gel structures during 1-4 h of SCS immersion. During the first 0.5 h of SCS(rP172) immersion, more than 95% of rP172 protein in solution was adsorbed onto the sample surfaces and generated spherical assemblies of 10-60 nm diameters. During 0.5-4 h of SCS(rP172) immersion, the protein assemblies of rP172 remarkably induced the formation of orientated silica-gel plates (approximately 100-nm wide and 50-nm thick) and subsequently of long and thin apatite needle crystals. The recombinant amelogenin rP172-modulated apatite crystals resembled those formed in the early stage of tooth enamel biomineralization, suggesting the functional roles of amelogenins during the oriented growth of enamel crystallites and a great potential for amelogenins in applications designed to fabricate enamel-like calcium phosphate biomaterials.


Assuntos
Materiais Biocompatíveis/química , Cerâmica/química , Proteínas do Esmalte Dentário/farmacologia , Durapatita/química , Dióxido de Silício/química , Adsorção , Amelogenina , Fosfatos de Cálcio , Cristalização , Esmalte Dentário/química , Microanálise por Sonda Eletrônica , Vidro , Imersão , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica , Microesferas , Sílica Gel , Soluções , Análise Espectral , Propriedades de Superfície , Raios X
2.
J Biomed Mater Res ; 52(2): 422-9, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10951384

RESUMO

Alumina on alumina total hip arthroplasty has been in use for more than 25 years with encouraging results. However, an improvement of the alumina/bone interface still is required. The objective of this study was to investigate the in vitro and in vivo osteoconductive properties of sol-gel bioactive glass coated alumina implants. Two sol-gel glass compositions (58S Bioglass(R) and 77S Bioglass(R)) were used as coatings on alumina substrates and implanted in a rabbit model. The 58S sol-gel coating was employed in two configurations, single (A58S1) and double layer (A58S2). SEM analysis after one week in simulated body fluid revealed small crystals assumed to represent the initial phase of hydroxyapatite formation, whereas no clear conclusion could be drawn from Fourier transform infrared spectroscopy data. The percentage of bone in direct contact was greater for coated implants when compared to bulk alumina implants (p <0.001). In the case of A58S1 implants, bone percentage significantly increased from 45.1% after 3 weeks up to 87. 8% after 24 weeks of implantation (p = 0.0004). The presence of osteoid tissue, related to an aluminum release from the alumina substrates, was greatly diminished when compared to melt-derived glass-coated alumina implants.


Assuntos
Óxido de Alumínio , Artroplastia de Quadril , Materiais Biocompatíveis , Vidro , Prótese Articular , Animais , Humanos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA