Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 358: 190-203, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116543

RESUMO

At present, the most widely used aluminum adjuvants have poor ability to induce effective Th1 type immune responses. Existing evidence suggests that manganese is a potential metal adjuvant by activating cyclic guanosine phospho-adenosine synthase (cGAS)-interferon gene stimulator protein (STING) signaling pathway to enhance humoral and cellular immune response. Hence, the effective modulation of metal components is expected to be a new strategy to improve the efficiency of vaccine immunization. Here, we constructed a manganese and aluminum dual-adjuvant antigen co-delivery system (MnO2-Al-OVA) to enhance the immune responses of subunit vaccines. Namely, the aluminum hydroxide was first fused on the surface of the pre-prepared MnO2 nanoparticles, which were synthesized by a simple redox reaction with potassium permanganate (KMnO4) and oleic acid (OA). The engineered MnO2-Al-OVA could remarkably promote cellular internalization and maturation of dendritic cells. After subcutaneous vaccination, MnO2-Al-OVA rapidly migrated into the lymph nodes (LNs) and efficiently activate the cGAS-STING pathway, greatly induced humoral and cellular immune responses. Of note, our findings underscore the importance of coordination manganese adjuvants in vaccine design by promoting the activation of the cGAS-STING-IFN-I pathway. With a good safety profile and facile preparation process, this dual-adjuvant antigen co-delivery nanovaccine has great potential for clinical translation prospects.


Assuntos
Alumínio , Nanopartículas , Alumínio/farmacologia , Manganês , Compostos de Manganês/farmacologia , Óxidos , Adjuvantes Imunológicos , Imunidade Celular , Antígenos , Vacinas de Subunidades Antigênicas , Nucleotidiltransferases/farmacologia , Células Dendríticas , Imunidade Humoral
2.
Small ; 18(1): e2105530, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825482

RESUMO

Parenteral vaccines typically can prime systemic humoral immune response, but with limited effects on cellular and mucosal immunity. Here, a subcutis-to-intestine cascade for navigating nanovaccines to address this limitation is proposed. This five-step cascade includes lymph nodes targeting, uptaken by dendritic cells (DCs), cross-presentation of antigens, increasing CCR9 expression on DCs, and driving CD103+ DCs to mesenteric lymph nodes, in short, the LUCID cascade. Specifically, mesoporous silica nanoparticles are encapsulated with antigen and adjuvant toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides, and further coated by a lipid bilayer containing all-trans retinoic acid. The fabricated nanovaccines efficiently process the LUCID cascade to dramatically augment cellular and mucosal immune responses. Importantly, after being vaccinated with Salmonella enterica serovar Typhimurium antigen-loaded nanovaccine, the mice generate protective immunity against challenge of S. Typhimurium. These findings reveal the efficacy of nanovaccines mediated subcutis-to-intestine cascade in simultaneously activating cellular and mucosal immune responses against mucosal infections.


Assuntos
Nanopartículas , Vacinas , Animais , Antígenos , Células Dendríticas , Intestinos , Camundongos , Dióxido de Silício
3.
AAPS J ; 23(2): 32, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33629139

RESUMO

As one of the most important metabolites of vitamin A, all-trans retinoic acid (RA) plays a crucial role in regulating immune responses. RA has been shown to promote the differentiation of naïve T and B cells and perform diverse functions in the presence of different cytokines. RA also induces gut tropic lymphocytes through upregulating the expression of chemokine (C-C motif) receptor 9 (CCR9) and α4ß7 integrin. In addition, RA promotes the expression of the enzyme retinal dehydrogenase (RALDH) on dendritic cells, which in turn strengthens the ability to synthesize RA. Due to the insolubility of RA, proper formulation design can maximize its ability to improve immune responses for vaccines. Recent studies have developed some formulations co-loading RA and antigen, which can effectively imprint lymphocytes gut homing properties and induce intestine immune responses as well as systemic responses through parenteral administration, providing a promising direction for the protection against mucosal infections. Here, we review the mechanism and effects of RA on lymphocyte differentiation and gut homing, and recent progress of RA delivery systems to improve mucosal immune responses.


Assuntos
Portadores de Fármacos/química , Imunidade nas Mucosas/efeitos dos fármacos , Enteropatias/prevenção & controle , Tretinoína/administração & dosagem , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Humanos , Imunogenicidade da Vacina , Enteropatias/imunologia , Enteropatias/microbiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Camundongos , Solubilidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Tretinoína/química , Tretinoína/imunologia , Excipientes de Vacinas/química , Vacinas/química , Vacinas/imunologia
4.
J Control Release ; 300: 81-92, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30826373

RESUMO

Metal-organic frameworks (MOFs) have high surface area, tunable pore size, and high loading capacity, making them promising for drug delivery. However, their synthesis requires organic solvents, high temperature and high pressure that are incompatible with biomacromolecules. Zeolitic imidazole frameworks (ZIF-8) which forms through coordination between zinc ions and 2-methylimidazole (MeIM) have emerged as an advanced functional material for drug delivery due to its unique features such as high loading and pH-sensitive degradation. In this study, we took advantage of a natural biomineralization process to create aluminum-containing nanoZIF-8 particles for antigen delivery. Without organic solvents or stabilizing agent, nanoparticles (ZANPs) were synthesized by a mild and facile method with aluminum, model antigen ovalbumin (OVA) and ZIF-8 integrated. A high antigen loading capacity (%) of 30.6% and a pH dependent antigen release were achieved. A Toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides (CpG) was adsorbed on the surface of ZANPs (hereafter CpG/ZANPs) to boost the immune response. After subcutaneous injection in vivo, CpG/ZANPs targeted lymph nodes (LNs), where their cargo was efficiently internalized by LN-resident antigen-presenting cells (APCs). ZANPs decomposition in lysosomes released antigen into the cytoplasm and enhanced cross-presentation. Moreover, CpG/ZANPs induced strong antigen-specific humoral and cytotoxic T lymphocyte responses that significantly inhibited the growth of EG7-OVA tumors while showing minimal cytotoxicity. We demonstrate that ZANPs may be a safe and effective vehicle for the development of cancer vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Cloreto de Alumínio/administração & dosagem , Antígenos/administração & dosagem , Estruturas Metalorgânicas/administração & dosagem , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/administração & dosagem , Linfócitos T Citotóxicos/efeitos dos fármacos , Zeolitas/administração & dosagem , Animais , Linhagem Celular , Feminino , Imidazóis/administração & dosagem , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
5.
Transgenic Res ; 27(2): 155-166, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29476327

RESUMO

Soybean oil contains approximately 20% oleic acid and 63% polyunsaturated fatty acids, which limits its uses in food products and industrial applications because of its poor oxidative stability. Increasing the oleic acid content in soybean seeds provides improved oxidative stability and is also beneficial to human health. Endoplasmic reticulum-associated delta-12 fatty acid desaturase 2 (FAD2) is the key enzyme responsible for converting oleic acid (18:1) precursors to linoleic acid (18:2) in the lipid biosynthetic pathway. In this study, a 390-bp conserved sequence of GmFAD2-1B was used to trigger a fragment of RNAi-mediated gene knockdown, and a seed-specific promoter of the ß-conglycinin alpha subunit gene was employed to downregulate the expression of this gene in soybean seeds to increase the oleic acid content. PCR and Southern blot analysis showed that the T-DNA had inserted into the soybean genome and was stably inherited by the progeny. In addition, the expression analysis indicated that GmFAD2-1B was significantly downregulated in the seeds by RNAi-mediated post-transcription gene knockdown driven by the seed-specific promoter. The oleic acid content significantly increased from 20 to ~ 80% in the transgenic seeds, and the linoleic and linolenic acid content decreased concomitantly in the transgenic lines compared with that in the wild types. The fatty acid profiles also exhibited steady changes in three consecutive generations. However, the total protein and oil contents and agronomic traits of the transgenic lines did not show a significant difference compared with the wild types.


Assuntos
Ácidos Graxos Dessaturases/genética , Glycine max/genética , Sementes/genética , Óleo de Soja/genética , DNA Bacteriano/genética , Retículo Endoplasmático/enzimologia , Técnicas de Silenciamento de Genes , Plantas Geneticamente Modificadas/genética , Sementes/química , Óleo de Soja/química , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA