Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 12(8): 553-568, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37399126

RESUMO

Human embryonic stem cells-derived neural progenitor cells (hESCs-NPCs) transplantation holds great potential to treat stroke. We previously reported that delayed secondary degeneration occurs in the ventroposterior nucleus (VPN) of ipsilateral thalamus after distal branch of middle cerebral artery occlusion (dMCAO) in adult male Sprague-Dawley (SD) rats. In this study, we investigate whether hESCs-NPCs would benefit the neural recovery of the secondary damage in the VPN after focal cerebral infarction. Permanent dMCAO was performed with electrocoagulation. Rats were randomized into Sham, dMCAO groups with or without hESCs-NPCs treatment. HESCs-NPCs were engrafted into the peri-infarct regions of rats at 48 h after dMCAO. The transplanted hESCs-NPCs survive and partially differentiate into mature neurons after dMCAO. Notably, hESCs-NPCs transplantation attenuated secondary damage of ipsilateral VPN and improved neurological functions of rats after dMCAO. Moreover, hESCs-NPCs transplantation significantly enhanced the expression of BDNF and TrkB and their interaction in ipsilateral VPN after dMCAO, which was reversed by the knockdown of TrkB. Transplantated hESCs-NPCs reconstituted thalamocortical connection and promoted the formation of synapses in ipsilateral VPN post-dMCAO. These results suggest that hESCs-NPCs transplantation attenuates secondary damage of ipsilateral thalamus after cortical infarction, possibly through activating BDNF/TrkB pathway, enhancing thalamocortical projection, and promoting synaptic formation. It provides a promising therapeutic strategy for secondary degeneration in the ipsilateral thalamus post-dMCAO.


Assuntos
Células-Tronco Embrionárias , Infarto da Artéria Cerebral Média , Células-Tronco Neurais , Humanos , Células-Tronco Embrionárias/transplante , Animais , Ratos , Ratos Sprague-Dawley , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/terapia , Células-Tronco Neurais/transplante , Diferenciação Celular , Movimento Celular , Transdução de Sinais , Neuroproteção , Tálamo/metabolismo
2.
BMC Ecol Evol ; 21(1): 71, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931026

RESUMO

BACKGROUND: Cultivated tea is one of the most important economic and ecological trees distributed worldwide. Cultivated tea suffer from long-term targeted selection of traits and overexploitation of habitats by human beings, which may have changed its genetic structure. The chloroplast is an organelle with a conserved cyclic genomic structure, and it can help us better understand the evolutionary relationship of Camellia plants. RESULTS: We conducted comparative and evolutionary analyses on cultivated tea and wild tea, and we detected the evolutionary characteristics of cultivated tea. The chloroplast genome sizes of cultivated tea were slightly different, ranging from 157,025 to 157,100 bp. In addition, the cultivated species were more conserved than the wild species, in terms of the genome length, gene number, gene arrangement and GC content. However, comparing Camellia sinensis var. sinensis and Camellia sinensis var. assamica with their cultivars, the IR length variation was approximately 20 bp and 30 bp, respectively. The nucleotide diversity of 14 sequences in cultivated tea was higher than that in wild tea. Detailed analysis on the genomic variation and evolution of Camellia sinensis var. sinensis cultivars revealed 67 single nucleotide polymorphisms (SNPs), 46 insertions/deletions (indels), and 16 protein coding genes with nucleotide substitutions, while Camellia sinensis var. assamica cultivars revealed 4 indels. In cultivated tea, the most variable gene was ycf1. The largest number of nucleotide substitutions, five amino acids exhibited site-specific selection, and a 9 bp sequence insertion were found in the Camellia sinensis var. sinensis cultivars. In addition, phylogenetic relationship in the ycf1 tree suggested that the ycf1 gene has diverged in cultivated tea. Because C. sinensis var. sinensis and its cultivated species were not tightly clustered. CONCLUSIONS: The cultivated species were more conserved than the wild species in terms of architecture and linear sequence order. The variation of the chloroplast genome in cultivated tea was mainly manifested in the nucleotide polymorphisms and sequence insertions. These results provided evidence regarding the influence of human activities on tea.


Assuntos
Camellia sinensis , Camellia , Genoma de Cloroplastos , Camellia/genética , Camellia sinensis/genética , Genoma de Cloroplastos/genética , Humanos , Filogenia , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA