Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 100: 154052, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35344714

RESUMO

BACKGROUND: The clinical treatment of ulcerative colitis (UC) is limited. A traditional Chinese medicinal formula, Huangqin decoction (HQD), is chronicled in Shang Han Lun and is widely used to ameliorate gastrointestinal disorders, such as UC; however, its mechanism is yet to be clarified. PURPOSE: The present study aimed to investigate the effect of HQD on 7-day colitis induced by 3% dextran sulfate sodium (DSS) in mice and further explore the inhibitory effect of metabolites on DSS-damaged FHC cells. METHODS: The therapeutic efficacy of HQD was evaluated in a well-established DSS-induced colitis mice model. The clinical symptoms were analyzed, and biological samples were collected for microscopic examination, metabolomics, metagenomics, and the evaluation of the epithelial barrier function. The mechanism of metabolites regulated by HQD was evaluated in the DSS-induced FHC cell damage model. The samples were collected to detect the physiological functions of the cells. RESULTS: HQD suppressed the inflammation of DSS-induced colitis in vivo, attenuated DSS-induced clinical manifestations, reversed colon length reduction, and reduced histological injury. After HQD treatment, the DSS-induced gut dysbiosis was modulated, and the gut microbiota achieved a new equilibrium state. In addition, HQD activated the mTOR signaling pathway by upregulating amino acid metabolism. Significant phosphorylation of S6 and 4E-BP1 ameliorated intestinal epithelial barrier dysfunction. Moreover, HQD-regulated metabolites protected the epithelial barrier integrity by inhibiting DSS-induced apoptosis of FHC cells and regulating the proteins affecting apoptosis and cell-cell junction. CONCLUSIONS: These findings indicated that the mechanism of HQD was related to regulating the gut microbiota and amino acid metabolism, activating the mTOR signaling pathway, and protecting the intestinal mucosal barrier integrity.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Aminoácidos/metabolismo , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Scutellaria baicalensis/química , Serina-Treonina Quinases TOR/metabolismo
2.
J Ethnopharmacol ; 271: 113886, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33524513

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqin Decoction (HQD), a traditional Chinese medicinal (TCM) formula chronicled in Shang Han Lun, has been used to treat gastrointestinal diseases for nearly 1800 years. OBJECTIVE: To investigate the effects and underlying mechanisms of HQD on ulcerative colitis (UC). METHODS: The bioactive compounds in HQD were obtained from the traditional Chinese medicine systems pharmacology database. Then, the HQD and UC-related targets were analyzed by establishing HQD-Compounds-Targets (H-C-T) and protein-protein interaction (PPI) networks. Enrichment analysis was used for further study. The candidate targets for the effects of HQD on UC were validated using a dextran sulfate sodium-induced UC mouse experiment. RESULTS: The results showed that 51 key targets were gained by matching 284 HQD-related targets and 837 UC-related targets. Combined with H-C-T and PPI network analyses, the key targets were divided into endothelial growth, inflammation and signal transcription-related targets. Further experimental validation showed that HQD targeted estrogen receptor alpha (ESR1) and endothelial growth factor receptors to relieve endothelial dysfunction, thereby improving intestinal barrier function. The expression of inflammatory cytokines and signal transducers was suppressed by HQD treatment and inflammation was inhibited. CONCLUSIONS: HQD may acts on UC via the regulation of targets and pathways related to improving the intestinal mucosal barrier and ameliorating endothelial dysfunction. Additionally, ERS1 may be a new target to explore the mechanisms of UC.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Endotélio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Scutellaria baicalensis/química , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Endotélio/efeitos dos fármacos , Receptores ErbB/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Mapas de Interação de Proteínas , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Chin J Nat Med ; 14(5): 370-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27478100

RESUMO

Radix Adenophorae, a traditional Chinese medicine, has been reported to have a variety of biological functions. In the present study, a polysaccharide component, Radix Adenophorae Polysaccharide (RAPS), was purified from Radix Adenophorae by decoloring with ADS-7 macroporous adsorption resin, DEAE-52 cellulose ion-exchange chromatography, and Sephacryl S-300HR gel chromatography, with the purity of 98.3% and a molecular weight of 1.8 × 10(4) Da. The cell viability assay and microscopic examination revealed that RAPS promoted the proliferation and activation of macrophages. At 400 µg·mL(-1), RAPS stimulated RAW264.7 cell proliferation by 1.91-fold compared with the control. Meanwhile, RAPS significantly increased the secretion of pro-inflammatory cytokines (TNF-α and IL-6) in a dose-dependent manner in the supernatant of RAW264.7 cell culture as determined by ELISA. At 400 µg·mL(-1), the production of TNF-iα was 20.8-fold higher than that of the control. Simultaneously, the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) were increased in RAW264.7 cells incubated with RAPS, as measured by Griess assay and Western blot analysis. The NO production of cells treated with RAPS (400 µg·mL(-1)) reached 15.8 µmol·L(-1), which was 30.4-fold higher than that of the control (0.53 µmol·L(-1)). These data suggested that RAPS may enhance the immune function and protect against exogenous pathogens by activating macrophages.


Assuntos
Campanulaceae/química , Citocinas/imunologia , Fatores Imunológicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Citocinas/genética , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/imunologia , Camundongos , Óxido Nítrico/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA